Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,...Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.展开更多
The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electro...The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electrons,chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system.Simultaneously,from the multi-minima property of torsion potential the local conformational states are well defined.Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change.It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function.Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced.The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted.By using temperature dependence data the multi-torsion correlation was studied.The decoherence time of quantum torsion state is estimated.The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change.展开更多
As relaxor ferroelectric functional materials, their crystal structures depend on temperature, component, electric filed, pressure, and so on, which are important for the applications of sensors, transducers, and actu...As relaxor ferroelectric functional materials, their crystal structures depend on temperature, component, electric filed, pressure, and so on, which are important for the applications of sensors, transducers, and actuators. For the case of PbTiO3-based ferroelectrics Pb(Zn2/3Nb2/3)O3-PbTiO3, Pb(Mg1/3Nb2/3)O3-PbTiO3, Pb(In1/2Nb1/2)O3-Pb(Mgu3Nb2/3)O3-PbTiO3 and some other crystals, they have been extensively investigated due to the excellent electromechanical and piezoelectric properties. Generally, ferroelectric crystal structure and corresponding phase diagram are detected by temperature-dependent high resolution X-ray diffraction, low frequency dielectric permittivity, and domain structures. In this review, we focus on the novel condensed matter spectroscopy (i.e., spectroscopic ellipsometry, transmittance, photoluminescence spectra as well as Raman spectra), which is nondestructive, noncontact, and sensitive optical techniques for probing symmetries, phase transitions and phase diagrams of ferroelectric crystals. Besides, it can supply some other physical and chemical information for ferroelectric and semiconductor functional materials such as optical band gap, electronic transitions, dielectric functions, optical conductivity, absorption, pho- non modes, lattice dynamics as functions of temperature and PT composition.展开更多
基金Projects(11272267,11102168,10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by Northwestern Polytechnical University
文摘Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.
文摘The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electrons,chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system.Simultaneously,from the multi-minima property of torsion potential the local conformational states are well defined.Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change.It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function.Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced.The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted.By using temperature dependence data the multi-torsion correlation was studied.The decoherence time of quantum torsion state is estimated.The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change.
基金supported by the Major State Basic Research Development Program of China(Grant No.2013CB922300&2011CB922200)the National Natural Science Foundation of China(Grant Nos.11374097,61376129&61504156)+1 种基金the Projects of Science and Technology Commission of Shanghai Municipality(Grant Nos.15JC1401600,14XD1401500,13JC1402100&13JC1404200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning
文摘As relaxor ferroelectric functional materials, their crystal structures depend on temperature, component, electric filed, pressure, and so on, which are important for the applications of sensors, transducers, and actuators. For the case of PbTiO3-based ferroelectrics Pb(Zn2/3Nb2/3)O3-PbTiO3, Pb(Mg1/3Nb2/3)O3-PbTiO3, Pb(In1/2Nb1/2)O3-Pb(Mgu3Nb2/3)O3-PbTiO3 and some other crystals, they have been extensively investigated due to the excellent electromechanical and piezoelectric properties. Generally, ferroelectric crystal structure and corresponding phase diagram are detected by temperature-dependent high resolution X-ray diffraction, low frequency dielectric permittivity, and domain structures. In this review, we focus on the novel condensed matter spectroscopy (i.e., spectroscopic ellipsometry, transmittance, photoluminescence spectra as well as Raman spectra), which is nondestructive, noncontact, and sensitive optical techniques for probing symmetries, phase transitions and phase diagrams of ferroelectric crystals. Besides, it can supply some other physical and chemical information for ferroelectric and semiconductor functional materials such as optical band gap, electronic transitions, dielectric functions, optical conductivity, absorption, pho- non modes, lattice dynamics as functions of temperature and PT composition.