O437.2 98031694Stokes与Antistokes喇曼散射截面的温度依赖关系=Temperature dependence of Raman cross sec-tion for Stokes and Antistokes process[刊,中]/李黎明,曾令祉,蒋毅坚(北京工业大学应用物理系.北京(100022))∥北京工业...O437.2 98031694Stokes与Antistokes喇曼散射截面的温度依赖关系=Temperature dependence of Raman cross sec-tion for Stokes and Antistokes process[刊,中]/李黎明,曾令祉,蒋毅坚(北京工业大学应用物理系.北京(100022))∥北京工业大学学报.—1997,23(2).—展开更多
The gas phase thermodynamic properties of 135 polychlorinated xanthones(PCXTs)are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G**level.It ...The gas phase thermodynamic properties of 135 polychlorinated xanthones(PCXTs)are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G**level.It is found that the chlorine substitution pattern strongly influences the thermodynamic properties of the compounds.The thermodynamic properties of congeners with the same number of chlorines also depend on the chlorine substitution pattern,especially for ortho-substituted congeners.PCXT congeners with one phenyl ring fully chlorinated are found to be the least stable among the analogues.The effect of the chlorine substitution pattern is quantitatively studied by considering the number and position of Cl atom substitution(NPCS).The results show that the NPCS model may be used to predict the thermodynamic properties for all 135 PCXT congeners. In addition,the values of molar heat capacities at constant pressure(cp,m)from 200 to 1000 K for PCXT congeners are calculated,and the temperature dependence relation of this parameter is obtained using the least-squares method.展开更多
Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and ...Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and perpendicular to the applied field. At low temperatures, coercivity Hc oc (tFM)^-n, n = 1.5 and 1.38 for x = 0.2 and 0.4, respectively, in agreement with the random field model. At room temperature, the coercivity is nearly proportional to the inverse FM layer thickness. In addition to the exchange field and the coercivity, the characteristic of the magnetization reversal mechanism was found to change with temperature. At temperatures below 180 K, magnetization reversal process along the unidirectional axis is accompanied only by nucleation and pinning of domain wall while magnetization rotation is also involved at high temperatures.展开更多
The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electro...The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electrons,chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system.Simultaneously,from the multi-minima property of torsion potential the local conformational states are well defined.Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change.It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function.Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced.The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted.By using temperature dependence data the multi-torsion correlation was studied.The decoherence time of quantum torsion state is estimated.The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change.展开更多
文摘O437.2 98031694Stokes与Antistokes喇曼散射截面的温度依赖关系=Temperature dependence of Raman cross sec-tion for Stokes and Antistokes process[刊,中]/李黎明,曾令祉,蒋毅坚(北京工业大学应用物理系.北京(100022))∥北京工业大学学报.—1997,23(2).—
基金Supported by the National Natural Science Foundation of China (20977046, 20737001).
文摘The gas phase thermodynamic properties of 135 polychlorinated xanthones(PCXTs)are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G**level.It is found that the chlorine substitution pattern strongly influences the thermodynamic properties of the compounds.The thermodynamic properties of congeners with the same number of chlorines also depend on the chlorine substitution pattern,especially for ortho-substituted congeners.PCXT congeners with one phenyl ring fully chlorinated are found to be the least stable among the analogues.The effect of the chlorine substitution pattern is quantitatively studied by considering the number and position of Cl atom substitution(NPCS).The results show that the NPCS model may be used to predict the thermodynamic properties for all 135 PCXT congeners. In addition,the values of molar heat capacities at constant pressure(cp,m)from 200 to 1000 K for PCXT congeners are calculated,and the temperature dependence relation of this parameter is obtained using the least-squares method.
基金Project supported by the National Natural Science Foundation of China(Grant No.10504019)the Shanghai Leading Academic Discipline Program (Grant No.T0104)the Science Foundation of Shanghai Municipal Commission of Education(Grant No.05AZ10)
文摘Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and perpendicular to the applied field. At low temperatures, coercivity Hc oc (tFM)^-n, n = 1.5 and 1.38 for x = 0.2 and 0.4, respectively, in agreement with the random field model. At room temperature, the coercivity is nearly proportional to the inverse FM layer thickness. In addition to the exchange field and the coercivity, the characteristic of the magnetization reversal mechanism was found to change with temperature. At temperatures below 180 K, magnetization reversal process along the unidirectional axis is accompanied only by nucleation and pinning of domain wall while magnetization rotation is also involved at high temperatures.
文摘The conformational change of biological macromolecule is investigated from the point of quantum transition.A quantum theory on protein folding is proposed.Compared with other dynamical variables such as mobile electrons,chemical bonds and stretching-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system.Simultaneously,from the multi-minima property of torsion potential the local conformational states are well defined.Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change.It is shown that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function.Starting from the conformation-transition Hamiltonian the nonradiative matrix element was calculated and a general formulas for protein folding rate was deduced.The analytical form of the formula was utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation was interpreted.By using temperature dependence data the multi-torsion correlation was studied.The decoherence time of quantum torsion state is estimated.The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change.