Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through...Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.展开更多
This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since co...This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.展开更多
Passive strategies for acclimatization of buildings have been studied by several authors in many countries, especially the evaporative and radiant cooling techniques. Fiber cement tiles are very common in popular cons...Passive strategies for acclimatization of buildings have been studied by several authors in many countries, especially the evaporative and radiant cooling techniques. Fiber cement tiles are very common in popular constructions due to their low cost. However, they have over twice of the value thermal transmittance indicated to this bioclimatic zone according to Brazilian guidelines. The objective is to present an alternative to reduce high temperatures on fiber cement tiles. In this paper, the monitoring of passive cooling of roofing during the spring season in a city with subtropical climate is described. Single and combined reflective and evaporative cooling systems were studied in different environmental conditions. Internal surface temperatures of tiles were monitored together with weather variables. Results show a decrease of about 6 ℃, 9 ℃, 10 ℃ and 11 ℃ as compared to the original tiles according to environment conditions and the combined passive cooling techniques. These results allow for the conclusion that the use of passive cooling techniques opens up new possibilities to attenuate the internal surface temperatures of tiles and to consequently decrease the roofing solar heat gain into buildings, thus, providing less air cooling energy consumption.展开更多
Along with the development of space science and technology,miniature liquid helium temperature long life cryocooler is a focus subject in cryogenic study.Since it is the precondition of space detection researches,inst...Along with the development of space science and technology,miniature liquid helium temperature long life cryocooler is a focus subject in cryogenic study.Since it is the precondition of space detection researches,institutions of space in many countries do the research on it.In this article,we designed a compound cooling system.A three-stage high frequency thermal coupled pulse tube cryocooler was used to precool a Joule-Thomson(JT)cryocooler.This system has no moving parts at low temperatures and is hence suitable for space operation.Liquid helium temperature was successfully achieved in both open loop and closed cycle experiments.In the closed cycle experiment,when 473 W electric power was inputted,the cooling system reached a no-load temperature of 4.4 K,and a cooling capacity of 11.6 mW was provided at 4.54 K.It is the first miniature liquid helium temperature JT cryocooler in China and the research achievement paves a way for the space application of ultra-long wave infrared detection and THz technologies.展开更多
The thermal properties of photonic crystal fiber(PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method(FEM).The results show that the 18-core PCF has a more effect...The thermal properties of photonic crystal fiber(PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method(FEM).The results show that the 18-core PCF has a more effective thermal dispersion construction compared with the single core PCF and 19-core PCF.In addition,the temperature distribution of 18-core PCF laser with different thermal loads is simulated.The results show that the core temperature approaches the fiber drawing value of 1800 K approximately when the thermal load is above 80 W/m which corresponds to the pumping power of 600 W approximately,while the coating temperature approaches the damage value of about 550 K when the thermal load is above 15 W/m which corresponds to the pumping power of 110 W approximately.Therefore the fiber cooling is necessary to achieve power scaling.Compared with other different cooling systems,the copper cooling scheme is found to be an effective method to reduce the thermal effects.展开更多
A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air pas...A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air passage and is avoided to release into the room. The influence of the start-up performance of the heat pipe, the load of the rack and the load dissipation to the temperature and the velocity distribution in the rack are discussed. It is found that the temperature would be lower and the temperature distribution would be more uniform in the rack when the pulsating heat pipe is in operation. Also, the effect of rack electricity load on temperature distribution is analyzed. It is indicated that higher velocity of chilled air will improve heat transfer of the rack.展开更多
An advanced control concept, Predictive Functional Control (PFC), is applied for temperature control of a bench-scaled batch reactor equipped with monofluid heating/cooling system. First principles process models ar...An advanced control concept, Predictive Functional Control (PFC), is applied for temperature control of a bench-scaled batch reactor equipped with monofluid heating/cooling system. First principles process models are developed. Based on achieved models, significant process variables, which are difficult or impossible to measure online, are estimated from easily measured variables, and cascade PFC control strategy has been projected and implemented in Matlab RI 4. The dynamics of individual subunits is explicitly taken into consideration by internal model in the control algorithms, and model uncertainty, various process disturbances are compensated by modifi- cation of internal model. The experimental results present an excellent capability of tracking the set point, and the success of PFC technique as a process control paradigm is illustratively demonstrated.展开更多
Elevated working temperatures reduce the efficiency of dye-sensitized solar cells (DSCs), and effective temperature regulation protects them from the undesirable efficiency loss. In this work, a semi-transparent DSC...Elevated working temperatures reduce the efficiency of dye-sensitized solar cells (DSCs), and effective temperature regulation protects them from the undesirable efficiency loss. In this work, a semi-transparent DSC module equipped with a cooling sys- tem was designed and constructed for application in buildings, the temperature and output performance of the modules with or without cooling treatment were investigated. The test results showed the cooling system could noticeably improve the power generation and reduce the module temperature. Moreover, we established a mathematical model to analyze the modules' ther- mal performances, and introduced the concept of cooling efficiency to evaluate the cooling effect. The model accuracy have been validated utilizing measured data, and the effects of channel depth and mass flow rate on the module temperature and cooling efficiency were further theoretically studied. The combined DSC module has been found to have a good application prospect in building integrated photovoltaic (BIPV), and the numerical results are important in system design.展开更多
A method is proposed to compensate the output drift for cooled infrared imaging systems at various ambient temperatures. By calibrating the cryogenic infrared detector which absorbs the radiant flux of blackbody direc...A method is proposed to compensate the output drift for cooled infrared imaging systems at various ambient temperatures. By calibrating the cryogenic infrared detector which absorbs the radiant flux of blackbody directly, the internal factors can be obtained. Then, by combining the calibration result of infrared imaging system at an arbitrary ambient temperature, the output drift can be calculated and compensated at various integration time and ambient temperatures. Experimental results indicate that the proposed method can eliminate the effect of ambient temperature fluctuation on the system output efficiently.展开更多
基金supported by the key project of National Natural Science Foundation ‘‘Deep Heat Governance and Utilization’’ (Nos.51134005 and 41402273)the Doctoral Fund of Ministry of Education (No. 20130023110021)
文摘Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.
文摘This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.
文摘Passive strategies for acclimatization of buildings have been studied by several authors in many countries, especially the evaporative and radiant cooling techniques. Fiber cement tiles are very common in popular constructions due to their low cost. However, they have over twice of the value thermal transmittance indicated to this bioclimatic zone according to Brazilian guidelines. The objective is to present an alternative to reduce high temperatures on fiber cement tiles. In this paper, the monitoring of passive cooling of roofing during the spring season in a city with subtropical climate is described. Single and combined reflective and evaporative cooling systems were studied in different environmental conditions. Internal surface temperatures of tiles were monitored together with weather variables. Results show a decrease of about 6 ℃, 9 ℃, 10 ℃ and 11 ℃ as compared to the original tiles according to environment conditions and the combined passive cooling techniques. These results allow for the conclusion that the use of passive cooling techniques opens up new possibilities to attenuate the internal surface temperatures of tiles and to consequently decrease the roofing solar heat gain into buildings, thus, providing less air cooling energy consumption.
基金supported by the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA04074100)the National Natural Science Foundation of China(Grant No.51306196)
文摘Along with the development of space science and technology,miniature liquid helium temperature long life cryocooler is a focus subject in cryogenic study.Since it is the precondition of space detection researches,institutions of space in many countries do the research on it.In this article,we designed a compound cooling system.A three-stage high frequency thermal coupled pulse tube cryocooler was used to precool a Joule-Thomson(JT)cryocooler.This system has no moving parts at low temperatures and is hence suitable for space operation.Liquid helium temperature was successfully achieved in both open loop and closed cycle experiments.In the closed cycle experiment,when 473 W electric power was inputted,the cooling system reached a no-load temperature of 4.4 K,and a cooling capacity of 11.6 mW was provided at 4.54 K.It is the first miniature liquid helium temperature JT cryocooler in China and the research achievement paves a way for the space application of ultra-long wave infrared detection and THz technologies.
基金supported by the National Basic Research Program of China(No.2010CB327801)the Key Program of National Natural Science Foundation of China(No.60637010)the Natural Science Research Project in University of Hebei Province(No.Z2010163)
文摘The thermal properties of photonic crystal fiber(PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method(FEM).The results show that the 18-core PCF has a more effective thermal dispersion construction compared with the single core PCF and 19-core PCF.In addition,the temperature distribution of 18-core PCF laser with different thermal loads is simulated.The results show that the core temperature approaches the fiber drawing value of 1800 K approximately when the thermal load is above 80 W/m which corresponds to the pumping power of 600 W approximately,while the coating temperature approaches the damage value of about 550 K when the thermal load is above 15 W/m which corresponds to the pumping power of 110 W approximately.Therefore the fiber cooling is necessary to achieve power scaling.Compared with other different cooling systems,the copper cooling scheme is found to be an effective method to reduce the thermal effects.
基金supported by National Natural Science Foundation of China(No.51376019)
文摘A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air passage and is avoided to release into the room. The influence of the start-up performance of the heat pipe, the load of the rack and the load dissipation to the temperature and the velocity distribution in the rack are discussed. It is found that the temperature would be lower and the temperature distribution would be more uniform in the rack when the pulsating heat pipe is in operation. Also, the effect of rack electricity load on temperature distribution is analyzed. It is indicated that higher velocity of chilled air will improve heat transfer of the rack.
基金Financially supported by the Doctoral Fund of Ministry of Education of China(No.20126101120015)Natural Science Foundation of Education Department of Shaanxi Provincial Government(2013JK0619)
文摘An advanced control concept, Predictive Functional Control (PFC), is applied for temperature control of a bench-scaled batch reactor equipped with monofluid heating/cooling system. First principles process models are developed. Based on achieved models, significant process variables, which are difficult or impossible to measure online, are estimated from easily measured variables, and cascade PFC control strategy has been projected and implemented in Matlab RI 4. The dynamics of individual subunits is explicitly taken into consideration by internal model in the control algorithms, and model uncertainty, various process disturbances are compensated by modifi- cation of internal model. The experimental results present an excellent capability of tracking the set point, and the success of PFC technique as a process control paradigm is illustratively demonstrated.
基金supported by the National Basic Research Program of China(“973”Project)(Grant No.2011CBA00700)the National Natural Science Foundation of China(Grant Nos.61204075&61404142)the Fundamental Research Funds for the Central Universities(Grant No.2016XZZX005-07)
文摘Elevated working temperatures reduce the efficiency of dye-sensitized solar cells (DSCs), and effective temperature regulation protects them from the undesirable efficiency loss. In this work, a semi-transparent DSC module equipped with a cooling sys- tem was designed and constructed for application in buildings, the temperature and output performance of the modules with or without cooling treatment were investigated. The test results showed the cooling system could noticeably improve the power generation and reduce the module temperature. Moreover, we established a mathematical model to analyze the modules' ther- mal performances, and introduced the concept of cooling efficiency to evaluate the cooling effect. The model accuracy have been validated utilizing measured data, and the effects of channel depth and mass flow rate on the module temperature and cooling efficiency were further theoretically studied. The combined DSC module has been found to have a good application prospect in building integrated photovoltaic (BIPV), and the numerical results are important in system design.
文摘A method is proposed to compensate the output drift for cooled infrared imaging systems at various ambient temperatures. By calibrating the cryogenic infrared detector which absorbs the radiant flux of blackbody directly, the internal factors can be obtained. Then, by combining the calibration result of infrared imaging system at an arbitrary ambient temperature, the output drift can be calculated and compensated at various integration time and ambient temperatures. Experimental results indicate that the proposed method can eliminate the effect of ambient temperature fluctuation on the system output efficiently.