The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material ...The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.展开更多
Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- ...Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.展开更多
Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution insi...Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution inside the cans during thermal processing. A Computational Fluid Dynamics (CFD) model was developed for thermization of milk in the can heating at 65℃ for the first time to determine the temperature distribution in the canned milk at stationary position. This developed CFD model was validated with the experimental measurements of temperature. The effects of thermization temperature on milk flow profile (velocity), milk temperature and viscosity profiles inside the can during thermal process were investigated. Temperature profiles of milk in can at three different planes (i.e. top, middle and bottom plane) were studied. Moreover, thermization unit was calculated by correlating with temperature and it was found that maximum thermization unit was achieved at 540 s of thermal processing of milk in can.展开更多
The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines ...The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines the control scheme of the variable air volume system, that is, indoor temperature-control, indoor positive pressure control, air distribution static pressure control, air-supply temperature control and new air volume control. The dotted lines with arrows mean the output signals from the control unit to actuator, and the solid lines with arrows represent the input signals from the actuator to the control unit.展开更多
基金Project(51465031)supported by the National Natural Science Foundation of ChinaProject(17JR5RA126)supported by the Natural Science Foundation of Gansu Province,China
文摘The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.
基金Supported by the Natural Science Foundation of China under Grant No.10774053the Natural Science Foundation of Hubei Province of China under Grant No.2007ABA035
文摘Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.
文摘Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution inside the cans during thermal processing. A Computational Fluid Dynamics (CFD) model was developed for thermization of milk in the can heating at 65℃ for the first time to determine the temperature distribution in the canned milk at stationary position. This developed CFD model was validated with the experimental measurements of temperature. The effects of thermization temperature on milk flow profile (velocity), milk temperature and viscosity profiles inside the can during thermal process were investigated. Temperature profiles of milk in can at three different planes (i.e. top, middle and bottom plane) were studied. Moreover, thermization unit was calculated by correlating with temperature and it was found that maximum thermization unit was achieved at 540 s of thermal processing of milk in can.
文摘The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines the control scheme of the variable air volume system, that is, indoor temperature-control, indoor positive pressure control, air distribution static pressure control, air-supply temperature control and new air volume control. The dotted lines with arrows mean the output signals from the control unit to actuator, and the solid lines with arrows represent the input signals from the actuator to the control unit.