Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supers...Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supersonic flow has not been sufficiently clarified. Hence, in order to clarify the interactions between flow and particles, the authors consider the characteristics of particle motion, especially at high temperatures. In the present study, the flow of a gas with a diluted particle load is to be simulated in a conventional converging-diverging supersonic nozzle. The turbulent gas flow in the nozzle is computed with the finite difference and RANS (raynolds averaged navier-stokes simulation) methods. The particle motion is simulated in a Lagrangian manner. In addition, taking into account the light particle loading, a weak coupling method is used. Through this investigation, it is shown that the particle velocity increases monotonically from the nozzle throat to the outlet. And it is shown that particles can be accelerated to higher velocities in helium than in nitrogen, and smaller particles tend to attain higher speed and lower static temperature.展开更多
In this paper,we investigate the behaviors of dual fermion condensate in QED 3 under variation of temperature.By means of Dyson-Schwinger equation for the fermion propagator,we extract the dual fermion condensate and ...In this paper,we investigate the behaviors of dual fermion condensate in QED 3 under variation of temperature.By means of Dyson-Schwinger equation for the fermion propagator,we extract the dual fermion condensate and compare its behavior with the ordinary chiral fermion condensate and the chiral susceptibility.It is found that the dual fermion condensate cannot be regarded as the order parameter for the confinement-deconfinement phase transition in QED 3.Furthermore,the change of the dual fermion condensate around the chiral phase transition point observed in the present work must therefore be interpreted as solely induced by the chiral transition.展开更多
文摘Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supersonic flow has not been sufficiently clarified. Hence, in order to clarify the interactions between flow and particles, the authors consider the characteristics of particle motion, especially at high temperatures. In the present study, the flow of a gas with a diluted particle load is to be simulated in a conventional converging-diverging supersonic nozzle. The turbulent gas flow in the nozzle is computed with the finite difference and RANS (raynolds averaged navier-stokes simulation) methods. The particle motion is simulated in a Lagrangian manner. In addition, taking into account the light particle loading, a weak coupling method is used. Through this investigation, it is shown that the particle velocity increases monotonically from the nozzle throat to the outlet. And it is shown that particles can be accelerated to higher velocities in helium than in nitrogen, and smaller particles tend to attain higher speed and lower static temperature.
基金supported by the National Natural Science Foundation of China (Grant Nos.11047005,11105029,10935001 and 11075075)
文摘In this paper,we investigate the behaviors of dual fermion condensate in QED 3 under variation of temperature.By means of Dyson-Schwinger equation for the fermion propagator,we extract the dual fermion condensate and compare its behavior with the ordinary chiral fermion condensate and the chiral susceptibility.It is found that the dual fermion condensate cannot be regarded as the order parameter for the confinement-deconfinement phase transition in QED 3.Furthermore,the change of the dual fermion condensate around the chiral phase transition point observed in the present work must therefore be interpreted as solely induced by the chiral transition.