The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progr...The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progress and temperature evolution within CTB mixtures. For this reason, a numerical model was developed to predict the evolution of the rheological properties of fresh CTB slurry under the coupled effect of cement hydration and temperature. Experiments were conducted to investigate the rheological behaviours of the fresh CTB slurry. By comparing the simulated results with the experimental ones, the availability of this developed model was validated. Thereafter, the model was used to demonstrate the coupled effect of cement hydration and temperature on the evolution of fresh CTB slurry's rheological properties, under various conditions(initial CTB temperature, cement to tailings ratio, and water to cement ratio). The obtained results are helpful to better understanding the rheology of CTB slurry.展开更多
This study investigated the projected changes in the annual mean surface air temperature (SAT) over China under the 1.5 and 2.0 ℃ targets, by analyzing the outputs from 22 models of the Coupled Model Intercompariso...This study investigated the projected changes in the annual mean surface air temperature (SAT) over China under the 1.5 and 2.0 ℃ targets, by analyzing the outputs from 22 models of the Coupled Model Intercomparison Project Phase 5. Under the 1.5 ℃ target, the scope of changes in the average SAT over China is quite narrow and has the largest probability to increase by 1.7-2.0 ℃ under the various RCP pathways, although the time of occurrence of the 1.5 ℃ target has a large spread of 40-60 years. Similarly, the models consistently show that the average SAT over China would most likely increase by 2.4-2.7 ℃ under the 2.0 ℃ target. Furthermore, the warming shows a clear spatial distinction over China: being stronger in the northwest part and weaker in the southeast part. Under all RCP pathways, the SAT over the northwest part would increase by 1.9-2.1 ℃ for the 1.5℃ target, which is much stronger than the SAT increase over the southeast part (1.3-1.5 ℃). A similar spatial pattern appears for the 2.0 ℃ target.展开更多
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens...The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.展开更多
The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our prev...The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.展开更多
The temperature and angle dependent resistivity of Ba(Fe 0.75 Ru 0.25) 2 As 2 single crystals were measured in magnetic fields up to 14 T.The temperature dependent resistivity with the magnetic field aligned parallel ...The temperature and angle dependent resistivity of Ba(Fe 0.75 Ru 0.25) 2 As 2 single crystals were measured in magnetic fields up to 14 T.The temperature dependent resistivity with the magnetic field aligned parallel to c-axis and ab-planes allow us to derive the slope of dH ab c2 /dT and dH c c2 /dT near T c yielding an anisotropy ratio Γ = dH ab c2 /dT/dH c c2 /dT ≈ 2.By scaling the curves of resistivity vs.angle measured at a fixed temperature but different magnetic fields within the framework of the anisotropic Ginzburg-Landau theory,we obtained the anisotropy in an alternative way.Again we found that the anisotropy(m c /m ab) 1/2 was close to 2.This value is similar to that in Ba0.6K0.4Fe2As2(K-doped Ba122) and Ba(Fe 0.92 Co 0.08) 2 As 2(Co-doped Ba122).This suggests that the 3D warping effect of the Fermi surface in Ru-doped samples may not be stronger than that in the K-doped or Co-doped Ba122 samples,therefore the possible nodes appearing in Ru-doped samples cannot be ascribed to the 3D warping effect of the Fermi surface.展开更多
A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By intr...A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.展开更多
Climate drift refers to spurious long-term changes that may be inherent in coupled models when external forcing factors are fixed. Understanding the sources of this drift and tuning the drift are crucial for obtaining...Climate drift refers to spurious long-term changes that may be inherent in coupled models when external forcing factors are fixed. Understanding the sources of this drift and tuning the drift are crucial for obtaining reasonable simulations from coupled models. To prepare for the upcoming Coupled Model Intercomparison Project Phase 6, a new coupled model has been constructed based on the Community Earth System Model and the Grid-point Atmospheric Model of IAP LASG version 2. However, the surface temperature predicted by the new model is too underestimated, and this underestimation is caused by a type of climate drift, i.e., ‘‘initial shock.'' This study analyzes the source of the cold surface temperature from the perspective of energy balance and attempts to reduce the surface temperature drift by tuning the relative humidity threshold for low cloud.展开更多
基金Project(SKLCRSM13KFB05)supported by State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing)
文摘The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progress and temperature evolution within CTB mixtures. For this reason, a numerical model was developed to predict the evolution of the rheological properties of fresh CTB slurry under the coupled effect of cement hydration and temperature. Experiments were conducted to investigate the rheological behaviours of the fresh CTB slurry. By comparing the simulated results with the experimental ones, the availability of this developed model was validated. Thereafter, the model was used to demonstrate the coupled effect of cement hydration and temperature on the evolution of fresh CTB slurry's rheological properties, under various conditions(initial CTB temperature, cement to tailings ratio, and water to cement ratio). The obtained results are helpful to better understanding the rheology of CTB slurry.
基金We thank two anonymous reviewers and Professor Gao Xuejie for their various constructive and detailed comments, which have greatly helped us to improve the presentation of this paper. This research was supported by the National Key R&D Program of China (2017YFA0603802) and the National Natural Science Foundation of China (41675084).
文摘This study investigated the projected changes in the annual mean surface air temperature (SAT) over China under the 1.5 and 2.0 ℃ targets, by analyzing the outputs from 22 models of the Coupled Model Intercomparison Project Phase 5. Under the 1.5 ℃ target, the scope of changes in the average SAT over China is quite narrow and has the largest probability to increase by 1.7-2.0 ℃ under the various RCP pathways, although the time of occurrence of the 1.5 ℃ target has a large spread of 40-60 years. Similarly, the models consistently show that the average SAT over China would most likely increase by 2.4-2.7 ℃ under the 2.0 ℃ target. Furthermore, the warming shows a clear spatial distinction over China: being stronger in the northwest part and weaker in the southeast part. Under all RCP pathways, the SAT over the northwest part would increase by 1.9-2.1 ℃ for the 1.5℃ target, which is much stronger than the SAT increase over the southeast part (1.3-1.5 ℃). A similar spatial pattern appears for the 2.0 ℃ target.
基金Project(201606090050)supported by China Scholarship CouncilProject(51278104)supported by the National Natural Science Foundation of China+2 种基金Project(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,ChinaProject(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202)+2 种基金the Shanghai Second Polytechnic University Key Discipline Construction(4th term)-Control Theory&Control Engineering(XXKPY1308)the Cultivation Program of Young Teachers in Colleges and Universities of Shanghai(ZZegdl4013)the School Foundation of Shanghai Second Polytechnic University(EGD14XQD02)
文摘The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.
基金supported by the National Natural Science Foundation of China (Grant No. 11034011/A0402)the National Basic Research Program of China (Grant Nos. 2011CBA00102 and 2012CB821403)PAPD
文摘The temperature and angle dependent resistivity of Ba(Fe 0.75 Ru 0.25) 2 As 2 single crystals were measured in magnetic fields up to 14 T.The temperature dependent resistivity with the magnetic field aligned parallel to c-axis and ab-planes allow us to derive the slope of dH ab c2 /dT and dH c c2 /dT near T c yielding an anisotropy ratio Γ = dH ab c2 /dT/dH c c2 /dT ≈ 2.By scaling the curves of resistivity vs.angle measured at a fixed temperature but different magnetic fields within the framework of the anisotropic Ginzburg-Landau theory,we obtained the anisotropy in an alternative way.Again we found that the anisotropy(m c /m ab) 1/2 was close to 2.This value is similar to that in Ba0.6K0.4Fe2As2(K-doped Ba122) and Ba(Fe 0.92 Co 0.08) 2 As 2(Co-doped Ba122).This suggests that the 3D warping effect of the Fermi surface in Ru-doped samples may not be stronger than that in the K-doped or Co-doped Ba122 samples,therefore the possible nodes appearing in Ru-doped samples cannot be ascribed to the 3D warping effect of the Fermi surface.
基金Project supported by the National Basic Research Program (973) of China (No 90505015)the National Natural Science Foundation of China (Nos 90816006 and 10732050)
文摘A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.
基金supported by the CAS Strategic Priority Research Program (XDA05110304)the National 973 Basic Research Program of China (2015CB954102)the National Natural Science Foundation of China (41330527, 41205079, and 41305040)
文摘Climate drift refers to spurious long-term changes that may be inherent in coupled models when external forcing factors are fixed. Understanding the sources of this drift and tuning the drift are crucial for obtaining reasonable simulations from coupled models. To prepare for the upcoming Coupled Model Intercomparison Project Phase 6, a new coupled model has been constructed based on the Community Earth System Model and the Grid-point Atmospheric Model of IAP LASG version 2. However, the surface temperature predicted by the new model is too underestimated, and this underestimation is caused by a type of climate drift, i.e., ‘‘initial shock.'' This study analyzes the source of the cold surface temperature from the perspective of energy balance and attempts to reduce the surface temperature drift by tuning the relative humidity threshold for low cloud.