Total site heat integration(TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-...Total site heat integration(TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-fluid circuits, i.e., steam, dowtherms and hot water, have been proposed during last few decades. Indirect heat integration is preferred when the heat sources and sinks are separated in independent plants with rather long distance. This improves energy efficiency by adaption of intermediate fluid circle which acts as a utility provider for plants in a symbiotic network. However, there are some significant factors ignored in conventional TSHI, i.e. the investment of pipeline, cost of pumping and heat loss. These factors simultaneously determine the possibility and performance of heat integration. This work presents a new methodology for indirect heat integration in low temperature range using hot water circuit as intermediate-fluid medium. The new methodology enables the targeting of indirect heat integration across plants considering the factors mentioned earlier. An MINLP model with economic objective is established and solved. The optimization results give the mass flow rate of intermediate-fluid, diameter of pipeline, the temperature of the circuits and the matches of heat exchanger networks(HENS) automatically. Finally, the application of this proposed methodology is illustrated with a case study.展开更多
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv...Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.展开更多
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21476256)
文摘Total site heat integration(TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-fluid circuits, i.e., steam, dowtherms and hot water, have been proposed during last few decades. Indirect heat integration is preferred when the heat sources and sinks are separated in independent plants with rather long distance. This improves energy efficiency by adaption of intermediate fluid circle which acts as a utility provider for plants in a symbiotic network. However, there are some significant factors ignored in conventional TSHI, i.e. the investment of pipeline, cost of pumping and heat loss. These factors simultaneously determine the possibility and performance of heat integration. This work presents a new methodology for indirect heat integration in low temperature range using hot water circuit as intermediate-fluid medium. The new methodology enables the targeting of indirect heat integration across plants considering the factors mentioned earlier. An MINLP model with economic objective is established and solved. The optimization results give the mass flow rate of intermediate-fluid, diameter of pipeline, the temperature of the circuits and the matches of heat exchanger networks(HENS) automatically. Finally, the application of this proposed methodology is illustrated with a case study.
基金Supported by Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China
文摘Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.