Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS fin...Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable.展开更多
The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC c...The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.展开更多
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedepe...A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.展开更多
Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) fig...Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) figure, etc. in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software is employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distri- bution of tools and component of muhiple stamping cycles. The results obtained from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling system design.展开更多
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
基金Project (51071125) supported by the National Natural Science Foundation of ChinaProjects (SKLSP201107, SKLSP 201124) supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China
文摘Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable.
基金Project(51575536)supported by the National Natural Science Foundation of ChinaProject(2016YFB0301403)supported by the National Key Research and Development Program of ChinaProject(2017zzts435)supported by Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.
基金financial supports from the National Natural Science Foundation of China (No.51804349)the China Postdoctoral Science Foundation (No.2018M632986)+1 种基金the Natural Science Foundation of Hunan Province,China (No.2019JJ50766)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China (No.JCKY201851)。
文摘A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.
基金National Science and Technology Supporting Program of China(No.20 11BAG03B02)
文摘Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) figure, etc. in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software is employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distri- bution of tools and component of muhiple stamping cycles. The results obtained from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling system design.