变质沉积岩普遍含有碳质物,其源自沉积母岩中有机质。在变质过程中这些有机质逐渐转变为碳质物或石墨,且碳质物结晶程度可以作为变质等级的可靠指示标志。拉曼光谱是表征碳质物结晶度的有效工具,Beyssac et al.(2002a)基于碳质物拉曼光...变质沉积岩普遍含有碳质物,其源自沉积母岩中有机质。在变质过程中这些有机质逐渐转变为碳质物或石墨,且碳质物结晶程度可以作为变质等级的可靠指示标志。拉曼光谱是表征碳质物结晶度的有效工具,Beyssac et al.(2002a)基于碳质物拉曼光谱参数(R1=D1/G,D1和G为碳质物拉曼光谱峰强;R2=D1/(G+D1+D2),G、D1和D2为碳质物拉曼光谱峰面积)与寄主岩变质温度之间的线性关系构建了碳质物拉曼光谱温度计:T(℃)=-445(R2)+641,其简单且实用,并被应用到阿尔卑斯和喜马拉雅造山带热结构与折返机制研究中;随后,Rahl et al.(2005)对该变质温度计进行修订,修订后温度估算表达式为:T(℃)=737.3+320.9R1-1067R2-80.638R12,并将变质温度估算范围扩展为100~700℃。本文对碳质物拉曼光谱变质温度计的基本原理、方法、应用条件及其在造山带热结构重建与演化方面的研究进展进行了综述,并对碳质物拉曼光谱温度计与传统温度计估算的变质温度进行了系统的对比分析,结果表明碳质物拉曼光谱温度计代表峰期变质温度,不会受后期退变质影响,当传统温度计结果代表峰期变质温度时,二者计算结果一致。碳质物拉曼光谱温度计已被用于造山带热结构重建、折返过程的热演化,以及高应变带、流体相关热异常等研究。尽管变质过程的压力、变质持续时间、碳质物前体类型等因素对于碳质物拉曼光谱温度计的影响尚待研究,但与传统矿物组合温压计相结合,该方法可以有效评价峰期变质条件和造山多期热演化。展开更多
In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,a...In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.展开更多
文摘变质沉积岩普遍含有碳质物,其源自沉积母岩中有机质。在变质过程中这些有机质逐渐转变为碳质物或石墨,且碳质物结晶程度可以作为变质等级的可靠指示标志。拉曼光谱是表征碳质物结晶度的有效工具,Beyssac et al.(2002a)基于碳质物拉曼光谱参数(R1=D1/G,D1和G为碳质物拉曼光谱峰强;R2=D1/(G+D1+D2),G、D1和D2为碳质物拉曼光谱峰面积)与寄主岩变质温度之间的线性关系构建了碳质物拉曼光谱温度计:T(℃)=-445(R2)+641,其简单且实用,并被应用到阿尔卑斯和喜马拉雅造山带热结构与折返机制研究中;随后,Rahl et al.(2005)对该变质温度计进行修订,修订后温度估算表达式为:T(℃)=737.3+320.9R1-1067R2-80.638R12,并将变质温度估算范围扩展为100~700℃。本文对碳质物拉曼光谱变质温度计的基本原理、方法、应用条件及其在造山带热结构重建与演化方面的研究进展进行了综述,并对碳质物拉曼光谱温度计与传统温度计估算的变质温度进行了系统的对比分析,结果表明碳质物拉曼光谱温度计代表峰期变质温度,不会受后期退变质影响,当传统温度计结果代表峰期变质温度时,二者计算结果一致。碳质物拉曼光谱温度计已被用于造山带热结构重建、折返过程的热演化,以及高应变带、流体相关热异常等研究。尽管变质过程的压力、变质持续时间、碳质物前体类型等因素对于碳质物拉曼光谱温度计的影响尚待研究,但与传统矿物组合温压计相结合,该方法可以有效评价峰期变质条件和造山多期热演化。
基金supported by the State Key Development Program for Basic Research of China(No.2013CB036003)the National Natural Science Foundation of China(No.51374198)the CUMT Innovation and Entrepreneurship Fund for Undergraduates(No.201509)
文摘In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.