制备了1-甲基-3-丙基咪唑硫离子液体电解质,并应用在量子点敏化太阳能电池中。通过优化S和Na2S的浓度,电解质的电导率在25°C下达到了12.96 m S?cm^(-1)。差示扫描量热法分析表明离子液体电解质的玻璃化转变温度为-85°C。采用...制备了1-甲基-3-丙基咪唑硫离子液体电解质,并应用在量子点敏化太阳能电池中。通过优化S和Na2S的浓度,电解质的电导率在25°C下达到了12.96 m S?cm^(-1)。差示扫描量热法分析表明离子液体电解质的玻璃化转变温度为-85°C。采用该电解质的量子点敏化太阳能电池在25°C下达到了3.03%的光电转化效率(η),与采用水基电解质的电池的效率3.34%接近。由于本文中的离子液体电解质具有低玻璃化转变温度和不易挥发的优点,采用离子液体电解质的量子点敏化太阳能电池在-20°C(η=2.32%)及80°C(η=1.90%)的温度下表现出了比水基电解质优异的光电转化性能。展开更多
According to the heating effect caused by interaction between matters,a series of experiments on the interaction between drugs and cells from human bodies,DNA and physiological saline have been carried out with a MS-8...According to the heating effect caused by interaction between matters,a series of experiments on the interaction between drugs and cells from human bodies,DNA and physiological saline have been carried out with a MS-80 standard Calvet microcalorimeter.The experiments include: (1) Thermokinetic studies of the effect of anticancer drugs [sodium norcantharidate (ASN),the bioac- tire materials (Sp.P and Sp.S) from algae etc.]on the cancer cells [Hela,human breast carcinoma (Bcap-37),human adenocarcinoma gastric cells (SGc-7901 and MCF-7) etc.] and the normal cells from human bodies [diploid fibroblasts from human fetal lung (2BS) etc.] at 310.15 K:(2) Studies of the in- tercalation binding of some alkaloidal drugs with the bioactivity to inhibit monoamine oxidase (harmalinc and harmine etc.) to call thymus DNA in neutral aqueous solution at 298.15 K:(3) Studies of the interaction between long acting drugs (long acting oral contraceptive-norgestrel etc.) and slow- releasing drug (Contac) and aqueous solution of 0.9% NaCI at 310.15 K.All the experimental results have given their characteristic thermograms and the interaction enthalpy changes.On the analysis of all the results,the authors put forward a method on application of microcalorimetric technique for screen- ing and examination of medicines.The principle of application and the experimental operation of this method have been expounded,and some results of the above experiments have been discussed.As one of the methods for screening and examining medicines,the microcalorimctric method has some distin- guished features and advantages over other methods.展开更多
The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of var...The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of various operating parameters including reaction temperature (T),acid to sulfur molar ratio (nacid/nS),and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated.The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal.Moreover,there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS=8 and 23 for the reaction temperatures of 25 and 60°C,respectively.The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%.展开更多
The inexpensive and moisture-stable Lewis-acidic ionic liquids were prepared and applied for transesterification of soybean oil to biodiesel.The influences of molar ratio of methanol to soybean oil,reaction temperatur...The inexpensive and moisture-stable Lewis-acidic ionic liquids were prepared and applied for transesterification of soybean oil to biodiesel.The influences of molar ratio of methanol to soybean oil,reaction temperature and amount of ionic liquids were investigated.The transesterification of soybean oil to biodiesel catalyzed by choline chloride·xZnCl2 ionic liquids showed many advantages such as mild conditions and lower cost.On the other hand,the non-ideal yield and complicated separation between biodiesel and soybean oil were also investigated and analyzed.The improvement on the systems of choline chloride·xZnCl2 was proposed for further investigation.展开更多
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla...By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminat...Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminate cement as binders. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding, the specimens were heat treated at 1 000 ℃, 1 300℃ and 1 500℃ for 3 h, respectively. The bulk density ( BD), permanent linear change ( PLC), modulus of rupture(MOR) and clod crushing strength(CCS), thermal expansion coefficient and thermal shock resistance were examined. The results show that there is no obvious effect on adjusting permanent linear change and bulk density of castables by adding different particle sizes of cordierite at low temperature and intermediate temperature. Modulus of rupture of castable increase with the decreasing of the particle sizes of cordierite after heat treated by 1 000 ℃ and 1 300℃. In this experiment, thermal shock resistance of the castable with cordierite whose particle size is 0 - 1 mm is the best.展开更多
Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between...Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between 500 ℃ and 530 ℃, and the maximum tensile stress decreases rapidly when the temperature is above 532 ℃. The ductility decreases with increasing temperature and has an obvious fall when the temperature is above solidus temperature. This alloy almost has no ductility above 537 ℃, and cannot sustain tensile stress above 550℃. A brittle temperature range in which this alloy is prone to form microcracks was derived. The relation between microstructure, fraction solid and tensile properties were also investigated by examining the metallograph and fracture surface morphology of tested specimens, which could provide reference for forecasting the microcracks in this alloy occurring in semi-solid processing.展开更多
A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature rang...A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.展开更多
tert-Butylation of toluene with tert-butanol used as the alkylating agent was investigated over the activated bentonite and HY zeolite used as the catalyst.The influences of various butylation reaction parameters,incl...tert-Butylation of toluene with tert-butanol used as the alkylating agent was investigated over the activated bentonite and HY zeolite used as the catalyst.The influences of various butylation reaction parameters,including the toluene/tert-butanol ratio,the reaction temperature,and the space velocity were discussed.The optimal results were obtained at a reaction temperature of 180 ℃,a space velocity of 4 h-1,and a mole ratio of toluene to tert-butanol equating to 2.The structure and acidic properties of catalyst were characterized by the BET method and the Fourier transform infrared (FTIR) spectroscopy.Compared with the HY zeolite,the activated bentonite possessed high activity for toluene conversion and high para-selectivity because it had larger pore diameter,smaller micropore surface area and higher ratio of total Lewis acids to total Br nsted acids.展开更多
A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line s...A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.展开更多
In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperatur...In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.展开更多
基金supported by the National Natural Science Foundation of China(21103194,51506205)Science and Technology Planning Project of Guangdong Province,China(2014A010106018,2013A011401011)+3 种基金Guangdong-Hong Kong Joint Innovation Project of Guangdong Province,China(2014B050505015)Special Support Program of Guangdong Province,China(2014TQ01N610)Director Innovation Foundation of Guangzhou Institute of Energy Conversion,China(y307p81001)Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province,China(2014B090904071)~~
文摘制备了1-甲基-3-丙基咪唑硫离子液体电解质,并应用在量子点敏化太阳能电池中。通过优化S和Na2S的浓度,电解质的电导率在25°C下达到了12.96 m S?cm^(-1)。差示扫描量热法分析表明离子液体电解质的玻璃化转变温度为-85°C。采用该电解质的量子点敏化太阳能电池在25°C下达到了3.03%的光电转化效率(η),与采用水基电解质的电池的效率3.34%接近。由于本文中的离子液体电解质具有低玻璃化转变温度和不易挥发的优点,采用离子液体电解质的量子点敏化太阳能电池在-20°C(η=2.32%)及80°C(η=1.90%)的温度下表现出了比水基电解质优异的光电转化性能。
文摘According to the heating effect caused by interaction between matters,a series of experiments on the interaction between drugs and cells from human bodies,DNA and physiological saline have been carried out with a MS-80 standard Calvet microcalorimeter.The experiments include: (1) Thermokinetic studies of the effect of anticancer drugs [sodium norcantharidate (ASN),the bioac- tire materials (Sp.P and Sp.S) from algae etc.]on the cancer cells [Hela,human breast carcinoma (Bcap-37),human adenocarcinoma gastric cells (SGc-7901 and MCF-7) etc.] and the normal cells from human bodies [diploid fibroblasts from human fetal lung (2BS) etc.] at 310.15 K:(2) Studies of the in- tercalation binding of some alkaloidal drugs with the bioactivity to inhibit monoamine oxidase (harmalinc and harmine etc.) to call thymus DNA in neutral aqueous solution at 298.15 K:(3) Studies of the interaction between long acting drugs (long acting oral contraceptive-norgestrel etc.) and slow- releasing drug (Contac) and aqueous solution of 0.9% NaCI at 310.15 K.All the experimental results have given their characteristic thermograms and the interaction enthalpy changes.On the analysis of all the results,the authors put forward a method on application of microcalorimetric technique for screen- ing and examination of medicines.The principle of application and the experimental operation of this method have been expounded,and some results of the above experiments have been discussed.As one of the methods for screening and examining medicines,the microcalorimctric method has some distin- guished features and advantages over other methods.
基金Supported by the R&D center of Esfahan refinery (Esfahan,Iran)the technical supports of central laboratory of Esfahan Refinery for total sulfur analysis
文摘The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of various operating parameters including reaction temperature (T),acid to sulfur molar ratio (nacid/nS),and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated.The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal.Moreover,there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS=8 and 23 for the reaction temperatures of 25 and 60°C,respectively.The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%.
基金Supported by the National High Technology Research and Development Program of China(2007AA06Z202)the National Key Technology Research and Development Program of China(2006BAC02A10)the Distinguished Young Scholars Foundation of Jilin Province(20060114)
文摘The inexpensive and moisture-stable Lewis-acidic ionic liquids were prepared and applied for transesterification of soybean oil to biodiesel.The influences of molar ratio of methanol to soybean oil,reaction temperature and amount of ionic liquids were investigated.The transesterification of soybean oil to biodiesel catalyzed by choline chloride·xZnCl2 ionic liquids showed many advantages such as mild conditions and lower cost.On the other hand,the non-ideal yield and complicated separation between biodiesel and soybean oil were also investigated and analyzed.The improvement on the systems of choline chloride·xZnCl2 was proposed for further investigation.
基金supported by the project of "SDUST Qunxing Program"(No.qx0902075)
文摘By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
文摘Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminate cement as binders. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding, the specimens were heat treated at 1 000 ℃, 1 300℃ and 1 500℃ for 3 h, respectively. The bulk density ( BD), permanent linear change ( PLC), modulus of rupture(MOR) and clod crushing strength(CCS), thermal expansion coefficient and thermal shock resistance were examined. The results show that there is no obvious effect on adjusting permanent linear change and bulk density of castables by adding different particle sizes of cordierite at low temperature and intermediate temperature. Modulus of rupture of castable increase with the decreasing of the particle sizes of cordierite after heat treated by 1 000 ℃ and 1 300℃. In this experiment, thermal shock resistance of the castable with cordierite whose particle size is 0 - 1 mm is the best.
基金Projects(50774026, 50875059) supported by the National Natural Science Foundation of ChinaProject(20070420023) supported by the China Postdoctoral Science FoundationProject(2008AA03A239) supported by the National High-tech Research and Development Program of China
文摘Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between 500 ℃ and 530 ℃, and the maximum tensile stress decreases rapidly when the temperature is above 532 ℃. The ductility decreases with increasing temperature and has an obvious fall when the temperature is above solidus temperature. This alloy almost has no ductility above 537 ℃, and cannot sustain tensile stress above 550℃. A brittle temperature range in which this alloy is prone to form microcracks was derived. The relation between microstructure, fraction solid and tensile properties were also investigated by examining the metallograph and fracture surface morphology of tested specimens, which could provide reference for forecasting the microcracks in this alloy occurring in semi-solid processing.
文摘A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.
文摘tert-Butylation of toluene with tert-butanol used as the alkylating agent was investigated over the activated bentonite and HY zeolite used as the catalyst.The influences of various butylation reaction parameters,including the toluene/tert-butanol ratio,the reaction temperature,and the space velocity were discussed.The optimal results were obtained at a reaction temperature of 180 ℃,a space velocity of 4 h-1,and a mole ratio of toluene to tert-butanol equating to 2.The structure and acidic properties of catalyst were characterized by the BET method and the Fourier transform infrared (FTIR) spectroscopy.Compared with the HY zeolite,the activated bentonite possessed high activity for toluene conversion and high para-selectivity because it had larger pore diameter,smaller micropore surface area and higher ratio of total Lewis acids to total Br nsted acids.
基金Project(61174018) supported by National Natural Science Foundation, ChinaProject(ZR2011FQ025) supported by the Natural Science Foundation of Shandong Province ChinaProject(2010GN066) supported by the Independent Innovation Foundation of Shandong University, China
文摘A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.
文摘In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.