A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmo...A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The oscillator model is involved with the variations of both the eastern and western Pacific anomaly pat- terns. This paper proposes an ENSO atmospheric physics model using a method of the perturbation theory. The aim is to create an asymptotic solving method for the ENSO model. Employing the perturbed method, the asymptotic solution of corresponding problem is obtained, and the asymptotic behaviour of the solution is studied. Thus we can obtain the prognoses of the sea surface temperature anomaly and related physical quantities.展开更多
In this paper, the dynamic effect of oceanic upwelling on the intensity of E1 Nifio-Southern Oscilla tion (ENSO) is studied using a simple coupled model (Zebiak-Cane Model). The term balance analysis in the temper...In this paper, the dynamic effect of oceanic upwelling on the intensity of E1 Nifio-Southern Oscilla tion (ENSO) is studied using a simple coupled model (Zebiak-Cane Model). The term balance analysis in the temperature variability equation shows that the anomalous upwelling of the mean vertical temperature gradient and the mean advection of the anomalous meridional tem perature gradient are the two of most important factors that determine the intensity of ENSO events, in which the "vertical oceanic heat flux" in the eastern equatorial Pa cific (EEP) is the primary influencing factor. The lag cor relation between "vertical heat flux (VHF)" and ENSO intensity shows that the highest correlation occurs when the former leads the latter by one to two weeks. The VHF is positively correlated with the background thermocline strength in the EEP, and an increase of both could result in strong ENSO variability. Comparison of the forced and coupled experiments suggests that the coupled process can affect both the intensity and freauencv of ENSO.展开更多
基金Under the auspices of National Natural Science Foundation of China (No.40876010)Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+2 种基金Research and Development Special Fund for Public Welfare Industry (Meteorology) (No. GYHY200806010)LASG State Key Laboratory Special Fund, Foundation of E-Institutes of Shanghai Municipal Education Commission (No.E03004)Natural Science Foundation of Education Department of Fujian Province (No.JA10288)
文摘A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The oscillator model is involved with the variations of both the eastern and western Pacific anomaly pat- terns. This paper proposes an ENSO atmospheric physics model using a method of the perturbation theory. The aim is to create an asymptotic solving method for the ENSO model. Employing the perturbed method, the asymptotic solution of corresponding problem is obtained, and the asymptotic behaviour of the solution is studied. Thus we can obtain the prognoses of the sea surface temperature anomaly and related physical quantities.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40976007 and 41176002)the Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration (Grant No. GYHY201006022)the Norwegian Research Council through the East Asian DecCen Project (Grant No. 193690/S30)
文摘In this paper, the dynamic effect of oceanic upwelling on the intensity of E1 Nifio-Southern Oscilla tion (ENSO) is studied using a simple coupled model (Zebiak-Cane Model). The term balance analysis in the temperature variability equation shows that the anomalous upwelling of the mean vertical temperature gradient and the mean advection of the anomalous meridional tem perature gradient are the two of most important factors that determine the intensity of ENSO events, in which the "vertical oceanic heat flux" in the eastern equatorial Pa cific (EEP) is the primary influencing factor. The lag cor relation between "vertical heat flux (VHF)" and ENSO intensity shows that the highest correlation occurs when the former leads the latter by one to two weeks. The VHF is positively correlated with the background thermocline strength in the EEP, and an increase of both could result in strong ENSO variability. Comparison of the forced and coupled experiments suggests that the coupled process can affect both the intensity and freauencv of ENSO.