Gravity wave activity and dissipation in the height range from the low stratosphere to the low thermosphere(25–115 km)covering latitudes between 50°S and 50°N are statistically studied by using 9-year(Janua...Gravity wave activity and dissipation in the height range from the low stratosphere to the low thermosphere(25–115 km)covering latitudes between 50°S and 50°N are statistically studied by using 9-year(January 22,2002–December 31,2010)SABER/TIMED temperature data.We propose a method to extract realistic gravity wave fluctuations from the temperature profiles and treat square temperature fluctuations as GW activity.Overall,the gravity wave activity generally increases with height.Near the equator(0°–10°),the gravity wave activity shows a quasi-biennial variation in the stratosphere(below 40 km)while from 20°to 30°,it exhibits an annual variation below 40 km;in low latitudes(0°–30°)between the upper stratosphere and the low thermosphere(40–115 km),the gravity wave activity shows a semi-annual variation.In middle latitudes(40°–50°),the gravity wave activity has a clear annual variation below 85 km.In addition,we observe a four-monthly variation with peaks occurring usually in April,August,December in the northern hemisphere and in February,June,October in the southern hemisphere,respectively,above 85 km in middle latitudes,which has been seldom reported in gravity wave activity.In order to study the dissipation of gravity wave propagation,we calculate the gravity wave dissipation ratio,which is defined as the ratio of the gravity wave growth scale height to the atmosphere density scale height.The height variation of the dissipation ratio indicates that strong gravity wave dissipation mainly concentrates in the three height regions:the stratosphere(30–60 km),the mesopause(around 85 km)and the low thermosphere(above 100 km).Besides,gravity wave energy enhancement can be also observed in the background atmosphere.展开更多
A model of three-dimensional helm-shaped body composed of a helm-shaped fin and inner heat sources is built in this paper. For the specified volumes of the body, fin and heat source, the constructal optimizations of t...A model of three-dimensional helm-shaped body composed of a helm-shaped fin and inner heat sources is built in this paper. For the specified volumes of the body, fin and heat source, the constructal optimizations of the body with single and multiple inner heat sources are implemented. The entransy-dissipation-rate-based equivalent thermal resistance(ETR) is minimized in the optimizations. It shows that for the helm-shaped body with multiple inner heat sources, there exist an optimal ratio of the heat source distance to the radius of the extended fin and a twice optimal radius ratio of the centre fin to the extended fin which lead to the double minimum dimensionless ETR. Comparing the optimal result of the body with helm-shaped fin with that with annular fin, the radius of the centre fin and the distance between the heat source and the center of the body are decreased, and the ETR is decreased by 9.57%. Essentially, the temperature gradient field of the helm-shaped body is more homogenous, and its global heat transfer performance is improved.展开更多
The identification of the imperfection originating from finite-temperature-difference heat transfer is an indispensable step for both the performance analysis and the better design of a heat exchanger network (HEN) ...The identification of the imperfection originating from finite-temperature-difference heat transfer is an indispensable step for both the performance analysis and the better design of a heat exchanger network (HEN) with the aim of energy saving. This study develops a convenient area method for visualizing the heat-transfer imperfection of a HEN in terms of temperature-heat flow diagrams ( T-Q diagrams) by combining the composite curves that have already been used in pinch analysis and the re- cently developed entransy analysis. It is shown that the area between the hot and cold composite curves and the hot and cold utility lines on a T-Q diagram is just equal to the total entransy dissipation rate during the multi-stream heat transfer process occurred in a HEN, and this area can be used to graphically represent the total heat-transfer imperfection of the HEN. The increase in heat recovery or decrease in energy requirements with decreasing the minimum temperature difference, ATmin, of a HEN can then be attributed to a lower entransy dissipation rate, quantitatively represented by the decrease of the area between the composite curves and the utility lines. In addition, the differences between the T-Q diagram and the pre-existing energy level-enthalpy flow diagram (12-H diagram) in the roles of visualizing process imperfection and designing HENs are dis- cussed.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB825605)the National Natural Science Foundation of China(Grants Nos.41174126+6 种基金4082501341221003 and 40974082)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100141110020)the Ocean Public Welfare Scientific Research Project of the State Oceanic Administration of the People’s Republic of China(Grant No.201005017)a China Meteorological Administration(Grant No.GYHY201106011)the Open Programs of State Key Laboratory of Space Weatherthe Fundamental Research Funds for the Central Universities
文摘Gravity wave activity and dissipation in the height range from the low stratosphere to the low thermosphere(25–115 km)covering latitudes between 50°S and 50°N are statistically studied by using 9-year(January 22,2002–December 31,2010)SABER/TIMED temperature data.We propose a method to extract realistic gravity wave fluctuations from the temperature profiles and treat square temperature fluctuations as GW activity.Overall,the gravity wave activity generally increases with height.Near the equator(0°–10°),the gravity wave activity shows a quasi-biennial variation in the stratosphere(below 40 km)while from 20°to 30°,it exhibits an annual variation below 40 km;in low latitudes(0°–30°)between the upper stratosphere and the low thermosphere(40–115 km),the gravity wave activity shows a semi-annual variation.In middle latitudes(40°–50°),the gravity wave activity has a clear annual variation below 85 km.In addition,we observe a four-monthly variation with peaks occurring usually in April,August,December in the northern hemisphere and in February,June,October in the southern hemisphere,respectively,above 85 km in middle latitudes,which has been seldom reported in gravity wave activity.In order to study the dissipation of gravity wave propagation,we calculate the gravity wave dissipation ratio,which is defined as the ratio of the gravity wave growth scale height to the atmosphere density scale height.The height variation of the dissipation ratio indicates that strong gravity wave dissipation mainly concentrates in the three height regions:the stratosphere(30–60 km),the mesopause(around 85 km)and the low thermosphere(above 100 km).Besides,gravity wave energy enhancement can be also observed in the background atmosphere.
基金supported by the National Natural Science Foundation of China(Grant Nos.51176203 and 51356001)the Natural Science Foundation for Youngsters of Naval University of Engineering(Grant No.HGDQNJJ15007)
文摘A model of three-dimensional helm-shaped body composed of a helm-shaped fin and inner heat sources is built in this paper. For the specified volumes of the body, fin and heat source, the constructal optimizations of the body with single and multiple inner heat sources are implemented. The entransy-dissipation-rate-based equivalent thermal resistance(ETR) is minimized in the optimizations. It shows that for the helm-shaped body with multiple inner heat sources, there exist an optimal ratio of the heat source distance to the radius of the extended fin and a twice optimal radius ratio of the centre fin to the extended fin which lead to the double minimum dimensionless ETR. Comparing the optimal result of the body with helm-shaped fin with that with annular fin, the radius of the centre fin and the distance between the heat source and the center of the body are decreased, and the ETR is decreased by 9.57%. Essentially, the temperature gradient field of the helm-shaped body is more homogenous, and its global heat transfer performance is improved.
基金supported by the National Natural Science Foundation of China(Grant Nos.51206079,51356001)
文摘The identification of the imperfection originating from finite-temperature-difference heat transfer is an indispensable step for both the performance analysis and the better design of a heat exchanger network (HEN) with the aim of energy saving. This study develops a convenient area method for visualizing the heat-transfer imperfection of a HEN in terms of temperature-heat flow diagrams ( T-Q diagrams) by combining the composite curves that have already been used in pinch analysis and the re- cently developed entransy analysis. It is shown that the area between the hot and cold composite curves and the hot and cold utility lines on a T-Q diagram is just equal to the total entransy dissipation rate during the multi-stream heat transfer process occurred in a HEN, and this area can be used to graphically represent the total heat-transfer imperfection of the HEN. The increase in heat recovery or decrease in energy requirements with decreasing the minimum temperature difference, ATmin, of a HEN can then be attributed to a lower entransy dissipation rate, quantitatively represented by the decrease of the area between the composite curves and the utility lines. In addition, the differences between the T-Q diagram and the pre-existing energy level-enthalpy flow diagram (12-H diagram) in the roles of visualizing process imperfection and designing HENs are dis- cussed.