The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface f...The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxes J. Only three parameters x0 λand pc l are needed to calculate J by the heat pulse data for this analysis method.The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source.The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.展开更多
Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesi...Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620 ℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600 ℃. Its sinterability is improved at a temperature of 620 ℃ whereas sintering temperatures higher than 620 ℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550 ℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-IZr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.展开更多
Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardnes...Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone.展开更多
ZnO thin films are deposited on n-Si(111) substrates by pulsed laser deposition(PLD) system. Then the samples are annealed at different temperatures in air ambient and their properties are investigated particularl...ZnO thin films are deposited on n-Si(111) substrates by pulsed laser deposition(PLD) system. Then the samples are annealed at different temperatures in air ambient and their properties are investigated particularly as a function of annealing temperature. The microstructure, morphology and optical properties of the as-grown ZnO films are studied by X-ray diffraetion(XRD). atomic force mieroseope(AFM), Fourier transform infrared spectroscopy(FTIR) and photoluminescence(PL) spectra. The results show that the as- grown ZnO films have a hexagonal wurtzite structure with a preferred c-axis orientation. Moreover, the diameters of the ZnO crystallites become larger and the crystal quality of the ZnO fihns is improved with the increase of annealing temperature.展开更多
A wide range of events observed at the giant pulses (high energy density, observed localization of giant pulses GPs relative to the average pulse, fine structure of GPs with duration up to some nanoseconds, observed ...A wide range of events observed at the giant pulses (high energy density, observed localization of giant pulses GPs relative to the average pulse, fine structure of GPs with duration up to some nanoseconds, observed circular polarization of GPs, correlation between the GP phase and the phase of the hard pulsar emission X-ray and gamma) can be explained from the viewpoint that the internal polar gap is a cavity-resonator stimulated by discharges and radiating through the breaks in the magnetosphere. The new results in this field [the electromagnetic (era) waves generation in the gap in the process of longitudinal acceleration in the electric field vanishing on the star surface, high frequency break in the spectrum as a result of switching off this generation, formation in this process a power-low spectrum with a high frequency (hf) break, the possibility determination of pulsar magnetic field by the hf break position, the difference between main pulse and inter pulse mechanism generation, quantization of em tornado rotation in the gap and appearance of the bands in the inter pulse spectrum, influence the high energy density in the gap on pair generation and position of the dead line in pulsars] are added in the intermediate epilogue.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
Effect of higher order axial electron temperature on self-focusing of electromagnetic pulsed beam in collisional plasma is investigated.It is shown that higher order axial electron temperature T p4 is not trivial than...Effect of higher order axial electron temperature on self-focusing of electromagnetic pulsed beam in collisional plasma is investigated.It is shown that higher order axial electron temperature T p4 is not trivial than T p0 and T p2,which can modify slightly radial redistribution of electron density and increases effective dielectric constant.As a result,on one hand,slightly reduce electromagnetic beam self-focusing in the course of oscillatory convergence,on the other hand,quicken beam divergence in the course of steady divergence,i.e.,higher order axial electron temperature T p4 can decrease the influence of collisional nonlinearity in collisional plasma.展开更多
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxes J. Only three parameters x0 λand pc l are needed to calculate J by the heat pulse data for this analysis method.The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source.The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.
基金Project(ARP-28-122) supported by King Abdul Aziz City for Science and Technology (KAC ST) of Kingdom of Saudi Arabia
文摘Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620 ℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600 ℃. Its sinterability is improved at a temperature of 620 ℃ whereas sintering temperatures higher than 620 ℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550 ℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-IZr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.
文摘Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone.
基金National Natural Science Foundation of China(90301002 ,90201025)
文摘ZnO thin films are deposited on n-Si(111) substrates by pulsed laser deposition(PLD) system. Then the samples are annealed at different temperatures in air ambient and their properties are investigated particularly as a function of annealing temperature. The microstructure, morphology and optical properties of the as-grown ZnO films are studied by X-ray diffraetion(XRD). atomic force mieroseope(AFM), Fourier transform infrared spectroscopy(FTIR) and photoluminescence(PL) spectra. The results show that the as- grown ZnO films have a hexagonal wurtzite structure with a preferred c-axis orientation. Moreover, the diameters of the ZnO crystallites become larger and the crystal quality of the ZnO fihns is improved with the increase of annealing temperature.
文摘A wide range of events observed at the giant pulses (high energy density, observed localization of giant pulses GPs relative to the average pulse, fine structure of GPs with duration up to some nanoseconds, observed circular polarization of GPs, correlation between the GP phase and the phase of the hard pulsar emission X-ray and gamma) can be explained from the viewpoint that the internal polar gap is a cavity-resonator stimulated by discharges and radiating through the breaks in the magnetosphere. The new results in this field [the electromagnetic (era) waves generation in the gap in the process of longitudinal acceleration in the electric field vanishing on the star surface, high frequency break in the spectrum as a result of switching off this generation, formation in this process a power-low spectrum with a high frequency (hf) break, the possibility determination of pulsar magnetic field by the hf break position, the difference between main pulse and inter pulse mechanism generation, quantization of em tornado rotation in the gap and appearance of the bands in the inter pulse spectrum, influence the high energy density in the gap on pair generation and position of the dead line in pulsars] are added in the intermediate epilogue.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.
文摘Effect of higher order axial electron temperature on self-focusing of electromagnetic pulsed beam in collisional plasma is investigated.It is shown that higher order axial electron temperature T p4 is not trivial than T p0 and T p2,which can modify slightly radial redistribution of electron density and increases effective dielectric constant.As a result,on one hand,slightly reduce electromagnetic beam self-focusing in the course of oscillatory convergence,on the other hand,quicken beam divergence in the course of steady divergence,i.e.,higher order axial electron temperature T p4 can decrease the influence of collisional nonlinearity in collisional plasma.