介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联...介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联发射结电压和低失调运算放大器的PTAT电流产生器,实现了高精度的PTAT电流;采用具有负温度系数的电阻,补偿了VBE的高阶温度特性;采用共源共栅结构,提高了输出电压的电源抑制。后仿真结果表明,当电源电压为3.3 V,温度范围为-40~85℃时,温度传感器的输出电压范围为0.964~1.490V,输出电压的斜率范围为-4.245×10-3^-4.160×10-3,斜率变化范围为8.5×10-5,表明该温度传感器具有非常高的线性度。展开更多
设计了一种与环境温度变化无关、输出时钟频率保持恒定的温度补偿实时钟电路,可实现宽温度范围内(-40~85℃)时钟精度小于±5×10-6,即年累计计时误差小于2.5 min。该电路内置32.768 k Hz音叉型石英晶体振荡器,内置温度传感器...设计了一种与环境温度变化无关、输出时钟频率保持恒定的温度补偿实时钟电路,可实现宽温度范围内(-40~85℃)时钟精度小于±5×10-6,即年累计计时误差小于2.5 min。该电路内置32.768 k Hz音叉型石英晶体振荡器,内置温度传感器可以定时检测器件温度,采用模拟和数字校准等温度补偿的方法可大幅度提高温度补偿精度和范围。该电路出厂时已经完成全温度范围内的温度校准,客户可直接使用。展开更多
文摘介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联发射结电压和低失调运算放大器的PTAT电流产生器,实现了高精度的PTAT电流;采用具有负温度系数的电阻,补偿了VBE的高阶温度特性;采用共源共栅结构,提高了输出电压的电源抑制。后仿真结果表明,当电源电压为3.3 V,温度范围为-40~85℃时,温度传感器的输出电压范围为0.964~1.490V,输出电压的斜率范围为-4.245×10-3^-4.160×10-3,斜率变化范围为8.5×10-5,表明该温度传感器具有非常高的线性度。
文摘设计了一种与环境温度变化无关、输出时钟频率保持恒定的温度补偿实时钟电路,可实现宽温度范围内(-40~85℃)时钟精度小于±5×10-6,即年累计计时误差小于2.5 min。该电路内置32.768 k Hz音叉型石英晶体振荡器,内置温度传感器可以定时检测器件温度,采用模拟和数字校准等温度补偿的方法可大幅度提高温度补偿精度和范围。该电路出厂时已经完成全温度范围内的温度校准,客户可直接使用。