期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
三轴地磁传感器温度误差补偿研究 被引量:4
1
作者 管雪元 秦赓 《传感器与微系统》 CSCD 2020年第10期11-13,16,共4页
为了提高三轴地磁传感器测姿系统的精度,采用了温度补偿的方式对传感器输出进行误差补偿。分析了地磁传感器温度误差产生的机理,依此建立了三轴地磁传感器温度误差补偿模型,并根据此模型进行了相关的误差补偿实验。通过对比补偿前后的... 为了提高三轴地磁传感器测姿系统的精度,采用了温度补偿的方式对传感器输出进行误差补偿。分析了地磁传感器温度误差产生的机理,依此建立了三轴地磁传感器温度误差补偿模型,并根据此模型进行了相关的误差补偿实验。通过对比补偿前后的实验数据,可以得出结论:该温度误差补偿方法能有效减少由于温度因素对传感器输出造成的影响,提高三轴地磁传感器测姿系统的精度。 展开更多
关键词 三轴地磁传感器 温度漂移 温度误差补偿模型
下载PDF
测量机器人在线动态温度误差补偿技术 被引量:7
2
作者 王一 任永杰 +1 位作者 邾继贵 叶声华 《光电子.激光》 EI CAS CSCD 北大核心 2009年第4期491-494,共4页
为了降低温度变化对白车身激光视觉检测系统测量结果的影响,借助安装在工业机器人基座附近的靶标球,建立基于坐标值误差的温度误差补偿模型。同时考虑到机器人结构特点,分析了连杆参数变化规律,确定存在显著变化的参数。实验结果表明,... 为了降低温度变化对白车身激光视觉检测系统测量结果的影响,借助安装在工业机器人基座附近的靶标球,建立基于坐标值误差的温度误差补偿模型。同时考虑到机器人结构特点,分析了连杆参数变化规律,确定存在显著变化的参数。实验结果表明,使用这种标定方法可以使机器人重复定位精度接近标称水平,明显改善了测量系统的工作稳定性,满足在线动态补偿要求。 展开更多
关键词 白车身 工业机器人 坐标值误差 温度误差补偿模型 连杆参数
原文传递
A neural network method for estimating weighted mean temperature over China and adjacent areas 被引量:3
3
作者 Long Fengyang Hu Wusheng +1 位作者 Dong Yanfeng Yu Longfei 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期84-90,共7页
To improve the applicability of the global pressure and temperature 2 wet(GPT2w)model in estimating the weighted mean temperature in China and adjacent areas,the error compensation technology based on the neural netwo... To improve the applicability of the global pressure and temperature 2 wet(GPT2w)model in estimating the weighted mean temperature in China and adjacent areas,the error compensation technology based on the neural network was proposed,and a total of 374800 meteorological profiles measured from 2006 to 2015 of 100 radiosonde stations distributed in China and adjacent areas were used to establish an enhanced empirical model for estimating the weighted mean temperature in this region.The data from 2016 to 2018 of the remaining 92 stations in this region was used to test the performance of the proposed model.Results show that the proposed model is about 14.9%better than the GPT2w model and about 7.6%better than the Bevis model with measured surface temperature in accuracy.The performance of the proposed model is significantly improved compared with the GPT2w model not only at different height ranges,but also in different months throughout the year.Moreover,the accuracy of the weighted mean temperature estimation is greatly improved in the northwestern region of China where the radiosonde stations are very rarely distributed.The proposed model shows a great application potential in the nationwide real-time ground-based global navigation satellite system(GNSS)water vapor remote sensing. 展开更多
关键词 weighted mean temperature GPT2w model neural network error compensation GNSS meteorology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部