In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was inve...In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity.展开更多
The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron m...The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-ECAP processed and subsequently annealed Ti49.2Ni50.8 alloys consist of B2 parent phase, Ti4Ni2O phase and B19′ martensite at room temperature. Upon cooling, all samples show B2→R→B19′ two-stage transformation. Upon heating, when the annealing temperature is less than 400℃, the samples show B19′→R→B2 two-stage transformation; when the annealing temperature is higher than 500 ℃, the samples show B19′→B2 single-stage transformation. The B2-R transformation is characterized by wide interval due to the dislocations introduced during ECAP.展开更多
The QCD deconfinement phase transition in pure SU(3) gauge theory is studied on an anlsotropic lattice. The critical temperature is determined to be Tc ≈ 285 MeV. The relation between the deconfinement phase transi...The QCD deconfinement phase transition in pure SU(3) gauge theory is studied on an anlsotropic lattice. The critical temperature is determined to be Tc ≈ 285 MeV. The relation between the deconfinement phase transition and the breakdown of Z(3) center symmetry is also discussed.展开更多
基金Project(202203021221088)supported by the Fundamental Research Program of Shanxi Province,ChinaProject(20230010)supported by the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,China+5 种基金Project(202201050201012)supported by the Shanxi Provincial Science and Technology Major Special Project Plan of Taking the Lead in Unveiling the List,ChinaProject(2023-063)supported by the Research Project Supported by Shanxi Scholarship Council of ChinaProjects(51771129,52271109)supported by the National Natural Science Foundation of ChinaProject(2021YFB3703300)supported by the National Key Research and Development Program for Young Scientists,ChinaProject(YDZJSX2021B019)supported by the Special Fund Project for Guiding Local Science and Technology Development by the Central Government,ChinaProject(SKL-YSJ202103)supported by the Open Foundation of State Key Laboratory of High-end Compressor and System Technology,China。
文摘In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity.
基金Project(51001035)supported by the National Natural Science Foundation of ChinaProject(LBH-Q14035)supported by the Postdoctoral Funds for Scientific Research Initiation of Heilongjiang Province,ChinaProject(HEUCF20151002)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-ECAP processed and subsequently annealed Ti49.2Ni50.8 alloys consist of B2 parent phase, Ti4Ni2O phase and B19′ martensite at room temperature. Upon cooling, all samples show B2→R→B19′ two-stage transformation. Upon heating, when the annealing temperature is less than 400℃, the samples show B19′→R→B2 two-stage transformation; when the annealing temperature is higher than 500 ℃, the samples show B19′→B2 single-stage transformation. The B2-R transformation is characterized by wide interval due to the dislocations introduced during ECAP.
基金Supported by NSFC under Grant Nos.10347110,10575107,10421003,10835002CAS under Grant No.KJCX3-SYW-N2the Numerical Calculations were Performed on DeepComp 6800 Supercomputer of the Supercomputing Center of Chinese Academy of Sciences,Dawning 4000A Supercomputer of Shanghai Supercomputing Center,and NKstar 2 Supercomputer of Nankai University
文摘The QCD deconfinement phase transition in pure SU(3) gauge theory is studied on an anlsotropic lattice. The critical temperature is determined to be Tc ≈ 285 MeV. The relation between the deconfinement phase transition and the breakdown of Z(3) center symmetry is also discussed.