The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone w...The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.展开更多
Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impac...Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.展开更多
A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations ...A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations canbe used to calculate the mass of star.In addition,we find that star's mass has a minimum when matter state parameterγ→0.展开更多
The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surf...The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surface temperature(T_(s))over the Tibetan Plateau(TP)as a key climatically sensitive region remains unclear.This study evaluates the capability of FGOALS-f3-L in reproducing the climatological T_(s)over the TP relative to the Climate Forecast System Reanalysis.The results show that FGOALS-f3-L can reasonably capture the spatial pattern of T_(s)but underestimates the annual mean T_(s)for the whole TP.The simulated T_(s)for the whole TP shows a cold bias in winter and spring and a warm bias in summer and autumn.Further quantitative analysis based on the surface energy budget equation shows that the surface albedo feedback(SAF)term strongly contributes to the annual,winter,and spring mean cold bias in the western TP and to the warm bias in the eastern TP.Compared with the SAF term,the surface sensible and latent heat flux terms make nearly opposite contributions to the T_(s)bias and considerably offset the bias due to the SAF term.The cloud radiative forcing term strongly contributes to the annual and seasonal mean weak cold bias in the eastern TP.The longwave radiation term associated with the overestimated water vapor content accounts for a large portion of the warm bias over the whole TP in summer and autumn.Improving land surface and cloud processes in FGOALS-f3-L is critical to reduce the T_(s)bias over the TP.展开更多
The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing g...The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2,3...,of 2.4,5.5,8.7...By adjusting the radius(2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice.展开更多
In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common dam...In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common damage phenomena, such as frost heave, subsidence deformation and frost boiling, are all caused by water translocation. Aiming at the phenomenon, the changes of moisture content of seasonal frozen soil in Changchun City are mainly studied by long-term field observation and indoor testing of physical properties under different conditions, and then the variation characteristics of moisture content in soil under different compactness and temperature conditions are realized. The results show that the increasing section of moisture content and negative temperature section all lie in O. 0 - 1.0 m of subgrade. Both lowest air and earth temperature occur in January to February, and the most negative temperature ranges from -7℃ to -10℃.展开更多
An alternate non-Fourier heat conduction equation is derived from consideration of translation motion of spinless electron under a driving force due to an applied temperature gradient. This equation is a eapite ad cal...An alternate non-Fourier heat conduction equation is derived from consideration of translation motion of spinless electron under a driving force due to an applied temperature gradient. This equation is a eapite ad calcem,temperature. Elimination of the rate of change of velocity with respect to time leads to a non-Fourier heat conduction equation with a accumulation of temperature or ballistic term in it. The new constitutive heat conduction equation is combined with the energy balance equation in one dimension. The governing equation for transient temperature a partial differential equation (Eq. (23)) is solved for by the method of Laplace transforms. The problem considered is the semi-infinite medium with constant thermo physical properties with constant wall temperature boundary condition. A closed form analyticalexpression for the transient temperature was obtained (Eq. (36)) after truncation of higher order terms in the infinite binomial series and use of convolution and lag properties. This solution is compared with that obtained using the parabolic Fourier model and the damped wave model as presented in an earlier study. The predictions of Eq. (36) are closer to the Fourier model. The convex nature of the temperature curve is present.展开更多
A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of fl...A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly,the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacityflow rates are pretreated; Secondly, several rules are proposed to establish the superstructuremodel of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly,the improving genetic algorithm is applied to solve the mathematical model established at the secondstep effectively, and the original optimal structure of HEN based on the maximum operation limitingcondition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat loadof heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operationcondition between the upper and down bounds of supply temperature and heat capacity flow rates canbe obtained based on the original optimal structure of HEN by means of these rules. A case studydemonstrates the method presented in this paper is effective展开更多
Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,...Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these techniques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.展开更多
Fractionation of palm kernel oil (PKO) by short path distillation (SPD) at two feed flow rates (135 g/h and 195 g/h) and six distillation temperatures, TD,s (200, 210, 220, 230, 240 and 250 ℃) was investigate...Fractionation of palm kernel oil (PKO) by short path distillation (SPD) at two feed flow rates (135 g/h and 195 g/h) and six distillation temperatures, TD,s (200, 210, 220, 230, 240 and 250 ℃) was investigated. Other distillation parameters, such as vacuum pressure (0.001 mbar), blade rotation speed (400 rpm) and temperature of the feed material (60 ℃) were kept constant. The fractionated products, known as residue and distillate, were analysed for physico-chemical properties including fatty acid composition (FAC), triacylglycerol (TAG) composition, slip melting point (SMP), thermal analysis by differential scanning calorimetry (DSC) and solid fat content (SFC). Product yield was measured as well. Crystallisation behaviour of PKO and the fractionated products were studied by measurement of isothermal crystallisation, Tc,. at 0, 5, 10, 15, 20 and 25 ℃. The distillates, collected at all fractionation temperatures, were enriched with caprylic, capric and lauric acids. These fractions were also concentrated with low molecular weight and C36 TAGs. Distillates obtained at higher TDis (230-250 ℃) exhibited higher in SMP and SFC. On the other hand, the residual oils collected at all fractionation temperatures contained higher amount of long-chain fatty acid and palmitic acid. These fractions were enriched with high molecular weight TAGs. Residues obtained at lower Tois (200-220 ℃) were low in SMP and comparable SFC with PKO. Changes in fatty acid and TAG composition resulted in different crystallisation behaviour of the fractions. Distillates collected at all fractionation temperatures crystallised in a sharper peak while residues obtained at higher T Dis (230-250 ℃) showed broader crystallisation peaks, as shown by the DSC thermograms.展开更多
It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered'always-on interaction'.In this paper,we study a more realistic problem for such a quantum state transfer (...It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered'always-on interaction'.In this paper,we study a more realistic problem for such a quantum state transfer (QST)protocol,how the efficacy of QST is reduced by the quantum decoherence induced by a spatially distributed environment.Here,the environment is universally modeled as a bath of fermions located in different positions.By making use of theirreducible tensor method in angular momentum theory,we investigate the effect of environment on the efficiency of QSTfor both cases at zero and finite temperatures.We not only show the generic exponential decay of QST efficiency as thenumber of sites increase,but also find some counterintuitive effect,the QST can be enhanced as temperature increasesin some cases.展开更多
Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature ...Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature differs from the atmospheric air temperature. To reveal the correlation of the air temperature with temperature on interfaces air-snow and snow-ice, the known in the thermophysics solution of the problem of the heat transfer through the multilayer plate was applied. Derived solution connects the temperature of air and temperature on the snow-ice interface and satisfactory correlates with data of the field measurements of the temperature within snow layer and ice cover and ice thickness on the Heilongjiang (Amur) River. Results of investigation are recommended for the ice temperature evaluation in engineering practice.展开更多
The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated mode...The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.展开更多
Long-term preservation and easy transportation of human bone marrow-derived mesenchymal stem cells(hBM-MSCs) will facilitate their application in medical treatment and bioengineering.A pilot study on the freeze-drying...Long-term preservation and easy transportation of human bone marrow-derived mesenchymal stem cells(hBM-MSCs) will facilitate their application in medical treatment and bioengineering.A pilot study on the freeze-drying of hBM-MSCs was carried out.hBM-MSCs were loaded with trehalose.The glass transition temperature of the freeze-drying suspension was measured to provide information for the cooling and primary drying experiment.After freeze-drying,various rehydration processes were tested.The highest recovery rate of hBM-MSCs was(69.33± 13.08) %.Possible methods to improve freeze-drying outcomes are discussed.In conclusion,the present study has laid a foundation for the freeze-drying hBM-MSCs.展开更多
The identification of the imperfection originating from finite-temperature-difference heat transfer is an indispensable step for both the performance analysis and the better design of a heat exchanger network (HEN) ...The identification of the imperfection originating from finite-temperature-difference heat transfer is an indispensable step for both the performance analysis and the better design of a heat exchanger network (HEN) with the aim of energy saving. This study develops a convenient area method for visualizing the heat-transfer imperfection of a HEN in terms of temperature-heat flow diagrams ( T-Q diagrams) by combining the composite curves that have already been used in pinch analysis and the re- cently developed entransy analysis. It is shown that the area between the hot and cold composite curves and the hot and cold utility lines on a T-Q diagram is just equal to the total entransy dissipation rate during the multi-stream heat transfer process occurred in a HEN, and this area can be used to graphically represent the total heat-transfer imperfection of the HEN. The increase in heat recovery or decrease in energy requirements with decreasing the minimum temperature difference, ATmin, of a HEN can then be attributed to a lower entransy dissipation rate, quantitatively represented by the decrease of the area between the composite curves and the utility lines. In addition, the differences between the T-Q diagram and the pre-existing energy level-enthalpy flow diagram (12-H diagram) in the roles of visualizing process imperfection and designing HENs are dis- cussed.展开更多
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for ...Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperatures, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initiaJ coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.展开更多
文摘The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.
基金Project(2011ZX05000-026-004) supported by the National Science & Technology Specific Program of ChinaProject(2010D-5006-0604) supported by the China National Petroleum Corporation (CNPC) Innovation FoundationProject(51004167) supported by the National Natural Science Foundation of China
文摘Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper,the field equation and balance equation are derived at finite temperature,the analytic solutions of these equations canbe used to calculate the mass of star.In addition,we find that star's mass has a minimum when matter state parameterγ→0.
基金supported by the National Key Research and Development Program of China[grant number 2018YFC1505706]the National Natural Science Foundation of China[grant numbers 91937302,91737306,41975109]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA17010105]。
文摘The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System atmospheric component model(FGOALS-f3-L)participated in Phase 6 of the Coupled Model Intercomparison Project,but its reproducibility of surface temperature(T_(s))over the Tibetan Plateau(TP)as a key climatically sensitive region remains unclear.This study evaluates the capability of FGOALS-f3-L in reproducing the climatological T_(s)over the TP relative to the Climate Forecast System Reanalysis.The results show that FGOALS-f3-L can reasonably capture the spatial pattern of T_(s)but underestimates the annual mean T_(s)for the whole TP.The simulated T_(s)for the whole TP shows a cold bias in winter and spring and a warm bias in summer and autumn.Further quantitative analysis based on the surface energy budget equation shows that the surface albedo feedback(SAF)term strongly contributes to the annual,winter,and spring mean cold bias in the western TP and to the warm bias in the eastern TP.Compared with the SAF term,the surface sensible and latent heat flux terms make nearly opposite contributions to the T_(s)bias and considerably offset the bias due to the SAF term.The cloud radiative forcing term strongly contributes to the annual and seasonal mean weak cold bias in the eastern TP.The longwave radiation term associated with the overestimated water vapor content accounts for a large portion of the warm bias over the whole TP in summer and autumn.Improving land surface and cloud processes in FGOALS-f3-L is critical to reduce the T_(s)bias over the TP.
基金supported by a grant from the Major State Basic Research and Development Program of China (No. 2007CB714102)sponsored by the Fundamental Research Funds for the Central Universities (No. 2009B00714)
文摘The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2,3...,of 2.4,5.5,8.7...By adjusting the radius(2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice.
基金Supported by National Natural Science Foundation of China (No.40672180)
文摘In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common damage phenomena, such as frost heave, subsidence deformation and frost boiling, are all caused by water translocation. Aiming at the phenomenon, the changes of moisture content of seasonal frozen soil in Changchun City are mainly studied by long-term field observation and indoor testing of physical properties under different conditions, and then the variation characteristics of moisture content in soil under different compactness and temperature conditions are realized. The results show that the increasing section of moisture content and negative temperature section all lie in O. 0 - 1.0 m of subgrade. Both lowest air and earth temperature occur in January to February, and the most negative temperature ranges from -7℃ to -10℃.
文摘An alternate non-Fourier heat conduction equation is derived from consideration of translation motion of spinless electron under a driving force due to an applied temperature gradient. This equation is a eapite ad calcem,temperature. Elimination of the rate of change of velocity with respect to time leads to a non-Fourier heat conduction equation with a accumulation of temperature or ballistic term in it. The new constitutive heat conduction equation is combined with the energy balance equation in one dimension. The governing equation for transient temperature a partial differential equation (Eq. (23)) is solved for by the method of Laplace transforms. The problem considered is the semi-infinite medium with constant thermo physical properties with constant wall temperature boundary condition. A closed form analyticalexpression for the transient temperature was obtained (Eq. (36)) after truncation of higher order terms in the infinite binomial series and use of convolution and lag properties. This solution is compared with that obtained using the parabolic Fourier model and the damped wave model as presented in an earlier study. The predictions of Eq. (36) are closer to the Fourier model. The convex nature of the temperature curve is present.
基金Supported by the State Major Basic Research Department Program of China (No. G20000263) and the Deutsche Forschungs- gemeinschaft(DFG)(No. RO294/9).
文摘A new superstructure model of heat exchanger networks (HEN) with streamsplits based on rangers of streams supply temperatures and heat capacity flow rates is presented.The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly,the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacityflow rates are pretreated; Secondly, several rules are proposed to establish the superstructuremodel of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly,the improving genetic algorithm is applied to solve the mathematical model established at the secondstep effectively, and the original optimal structure of HEN based on the maximum operation limitingcondition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat loadof heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operationcondition between the upper and down bounds of supply temperature and heat capacity flow rates canbe obtained based on the original optimal structure of HEN by means of these rules. A case studydemonstrates the method presented in this paper is effective
文摘Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these techniques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.
文摘Fractionation of palm kernel oil (PKO) by short path distillation (SPD) at two feed flow rates (135 g/h and 195 g/h) and six distillation temperatures, TD,s (200, 210, 220, 230, 240 and 250 ℃) was investigated. Other distillation parameters, such as vacuum pressure (0.001 mbar), blade rotation speed (400 rpm) and temperature of the feed material (60 ℃) were kept constant. The fractionated products, known as residue and distillate, were analysed for physico-chemical properties including fatty acid composition (FAC), triacylglycerol (TAG) composition, slip melting point (SMP), thermal analysis by differential scanning calorimetry (DSC) and solid fat content (SFC). Product yield was measured as well. Crystallisation behaviour of PKO and the fractionated products were studied by measurement of isothermal crystallisation, Tc,. at 0, 5, 10, 15, 20 and 25 ℃. The distillates, collected at all fractionation temperatures, were enriched with caprylic, capric and lauric acids. These fractions were also concentrated with low molecular weight and C36 TAGs. Distillates obtained at higher TDis (230-250 ℃) exhibited higher in SMP and SFC. On the other hand, the residual oils collected at all fractionation temperatures contained higher amount of long-chain fatty acid and palmitic acid. These fractions were enriched with high molecular weight TAGs. Residues obtained at lower Tois (200-220 ℃) were low in SMP and comparable SFC with PKO. Changes in fatty acid and TAG composition resulted in different crystallisation behaviour of the fractions. Distillates collected at all fractionation temperatures crystallised in a sharper peak while residues obtained at higher T Dis (230-250 ℃) showed broader crystallisation peaks, as shown by the DSC thermograms.
基金Supported by the NSFC under Grant Nos.10775048,10704023NFRPC under Grant No.2007CB925204+1 种基金New Century Excellent Talents in University under Grant No.NCET-08-0682the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.07C579
文摘It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered'always-on interaction'.In this paper,we study a more realistic problem for such a quantum state transfer (QST)protocol,how the efficacy of QST is reduced by the quantum decoherence induced by a spatially distributed environment.Here,the environment is universally modeled as a bath of fermions located in different positions.By making use of theirreducible tensor method in angular momentum theory,we investigate the effect of environment on the efficiency of QSTfor both cases at zero and finite temperatures.We not only show the generic exponential decay of QST efficiency as thenumber of sites increase,but also find some counterintuitive effect,the QST can be enhanced as temperature increasesin some cases.
基金Reported investigations were partially supported by the Russian Foundation for Basic researches project No. 15-58-53013 FФEH a and the National Natural Science Foundation of China under contracts No. 51279122 and No. 51511130042.
文摘Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature differs from the atmospheric air temperature. To reveal the correlation of the air temperature with temperature on interfaces air-snow and snow-ice, the known in the thermophysics solution of the problem of the heat transfer through the multilayer plate was applied. Derived solution connects the temperature of air and temperature on the snow-ice interface and satisfactory correlates with data of the field measurements of the temperature within snow layer and ice cover and ice thickness on the Heilongjiang (Amur) River. Results of investigation are recommended for the ice temperature evaluation in engineering practice.
基金supported by the Special Foundation for State Major Basic Research Program of China(Grant No.2011ZX04002-101)
文摘The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.
基金Project (Nos.30600256 and 50606032) supported by the National Natural Science Foundation of China
文摘Long-term preservation and easy transportation of human bone marrow-derived mesenchymal stem cells(hBM-MSCs) will facilitate their application in medical treatment and bioengineering.A pilot study on the freeze-drying of hBM-MSCs was carried out.hBM-MSCs were loaded with trehalose.The glass transition temperature of the freeze-drying suspension was measured to provide information for the cooling and primary drying experiment.After freeze-drying,various rehydration processes were tested.The highest recovery rate of hBM-MSCs was(69.33± 13.08) %.Possible methods to improve freeze-drying outcomes are discussed.In conclusion,the present study has laid a foundation for the freeze-drying hBM-MSCs.
基金supported by the National Natural Science Foundation of China(Grant Nos.51206079,51356001)
文摘The identification of the imperfection originating from finite-temperature-difference heat transfer is an indispensable step for both the performance analysis and the better design of a heat exchanger network (HEN) with the aim of energy saving. This study develops a convenient area method for visualizing the heat-transfer imperfection of a HEN in terms of temperature-heat flow diagrams ( T-Q diagrams) by combining the composite curves that have already been used in pinch analysis and the re- cently developed entransy analysis. It is shown that the area between the hot and cold composite curves and the hot and cold utility lines on a T-Q diagram is just equal to the total entransy dissipation rate during the multi-stream heat transfer process occurred in a HEN, and this area can be used to graphically represent the total heat-transfer imperfection of the HEN. The increase in heat recovery or decrease in energy requirements with decreasing the minimum temperature difference, ATmin, of a HEN can then be attributed to a lower entransy dissipation rate, quantitatively represented by the decrease of the area between the composite curves and the utility lines. In addition, the differences between the T-Q diagram and the pre-existing energy level-enthalpy flow diagram (12-H diagram) in the roles of visualizing process imperfection and designing HENs are dis- cussed.
基金Supported by National Natural Science Foundation of China under Grant No.10604002
文摘Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperatures, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initiaJ coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.