Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS fin...Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable.展开更多
Molecular dynamics simulation was used to study the melting of MgO at high pressures. The melting temperature of MgO was accurately obtained at elevated temperature and high pressure after corrections based on the mod...Molecular dynamics simulation was used to study the melting of MgO at high pressures. The melting temperature of MgO was accurately obtained at elevated temperature and high pressure after corrections based on the modern theory of melting. The calculated melting curve was compared with the available experimental data and other theoretical results at the pressure range of 0-135 GPa. The corrected melting temperature of MgO is in good agreement with the results from Lindemann melting equation and the two- phase simulated results below 15 GPa.展开更多
The experimental data of lean blowout fuel/air ratio of a rectangular swirl cup combustor with different inlet temperatures was obtained at atmospheric pressure condition.Numerical simulations both burning and non-bur...The experimental data of lean blowout fuel/air ratio of a rectangular swirl cup combustor with different inlet temperatures was obtained at atmospheric pressure condition.Numerical simulations both burning and non-burning were performed corresponding to the experimental data at lean blowout.Results indicated that the size of the recirculation region in the primary zone was obviously smaller when burning than non-burning,but the locations of the cores of their recirculation regions were almost the same.The increase of inlet air temperature didn't mean the rise of the temperature of recirculation region core.The location of the maximum temperature in the primary zone was not the same as that one of the core temperature of the recirculation region.Further more,the reasons were analyzed how the lean blowout fuel/air ratio changed with the inlet temperature increasing under the actions of factors both positive and negative to combustion,and this would be helpful to deepen the understanding of the lean blowout process of swirl cup combustor.展开更多
基金Project (51071125) supported by the National Natural Science Foundation of ChinaProjects (SKLSP201107, SKLSP 201124) supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China
文摘Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable.
文摘Molecular dynamics simulation was used to study the melting of MgO at high pressures. The melting temperature of MgO was accurately obtained at elevated temperature and high pressure after corrections based on the modern theory of melting. The calculated melting curve was compared with the available experimental data and other theoretical results at the pressure range of 0-135 GPa. The corrected melting temperature of MgO is in good agreement with the results from Lindemann melting equation and the two- phase simulated results below 15 GPa.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.50876104)
文摘The experimental data of lean blowout fuel/air ratio of a rectangular swirl cup combustor with different inlet temperatures was obtained at atmospheric pressure condition.Numerical simulations both burning and non-burning were performed corresponding to the experimental data at lean blowout.Results indicated that the size of the recirculation region in the primary zone was obviously smaller when burning than non-burning,but the locations of the cores of their recirculation regions were almost the same.The increase of inlet air temperature didn't mean the rise of the temperature of recirculation region core.The location of the maximum temperature in the primary zone was not the same as that one of the core temperature of the recirculation region.Further more,the reasons were analyzed how the lean blowout fuel/air ratio changed with the inlet temperature increasing under the actions of factors both positive and negative to combustion,and this would be helpful to deepen the understanding of the lean blowout process of swirl cup combustor.