In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the ste...In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the steady-state simulation. Sensitive analysis was applied to find the stable intial value and provide a basis for the improved control structure design. The Aspen Dynamics software was adopted to study the process dynamic behaviors, and two novel control structures provided with feed ratio controllers and sensitive tray temperature controllers were proposed. The reflux ratio controllers were applied in the improved novel control structures. Both control structures abandoned the composition controllers that were replaced by simpler controllers with which the product purity could meet the specification requiring under a ± 20% disturbance to the total feed flowrate / MeAc composition.展开更多
Plasma torch is a device that transforms electrical energy into heat carried by a gas and its safe operation is necessary to control her temperature. This paper presents the use of the Arduino board in temperature con...Plasma torch is a device that transforms electrical energy into heat carried by a gas and its safe operation is necessary to control her temperature. This paper presents the use of the Arduino board in temperature control of a plasma torch through fuzzy control. The plasma torch of this project was built so that a flow of water can circulate through your body, allowing its cooling. The cooling system mounted consists of one radiator, one expansion vase, one water pump and one temperature sensor. The heated water coming the plasma torch is passed by the temperature sensor. This is converted in a voltage and read by an analog input port of the Arduino. This processes the information received and makes the decision to turn on/off the radiator fan and/or powered the frequency inverter water pump to control the temperature. The graph of the fuzzy control showed an oscillation between 104 °F to 122 °F around the chosen reference 113 °F. The results show that it is possible to control the temperature of a plasma torch using the Arduino board and fuzzy logic.展开更多
This is a greenhouse ecological parameters measurement and control system, the system implements the data collection of field temperature, humidity and carbon dioxide by using the 1-wire bus network which consist of 1...This is a greenhouse ecological parameters measurement and control system, the system implements the data collection of field temperature, humidity and carbon dioxide by using the 1-wire bus network which consist of 1-wire bus temperature sensor, 1-wire bus humidity sensor, Analog-to-Digital Converter(ADC), CO2 sensor and intelligent battery monitor.展开更多
In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee netw...In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.展开更多
基金supported financially by the Fundamental Research Funds for the Central Universities (Grant No.18CX02120A)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(Grant No. BS2014NJ010)the National Natural Science Foundation of China (Grant No. 21506255)
文摘In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the steady-state simulation. Sensitive analysis was applied to find the stable intial value and provide a basis for the improved control structure design. The Aspen Dynamics software was adopted to study the process dynamic behaviors, and two novel control structures provided with feed ratio controllers and sensitive tray temperature controllers were proposed. The reflux ratio controllers were applied in the improved novel control structures. Both control structures abandoned the composition controllers that were replaced by simpler controllers with which the product purity could meet the specification requiring under a ± 20% disturbance to the total feed flowrate / MeAc composition.
文摘Plasma torch is a device that transforms electrical energy into heat carried by a gas and its safe operation is necessary to control her temperature. This paper presents the use of the Arduino board in temperature control of a plasma torch through fuzzy control. The plasma torch of this project was built so that a flow of water can circulate through your body, allowing its cooling. The cooling system mounted consists of one radiator, one expansion vase, one water pump and one temperature sensor. The heated water coming the plasma torch is passed by the temperature sensor. This is converted in a voltage and read by an analog input port of the Arduino. This processes the information received and makes the decision to turn on/off the radiator fan and/or powered the frequency inverter water pump to control the temperature. The graph of the fuzzy control showed an oscillation between 104 °F to 122 °F around the chosen reference 113 °F. The results show that it is possible to control the temperature of a plasma torch using the Arduino board and fuzzy logic.
文摘This is a greenhouse ecological parameters measurement and control system, the system implements the data collection of field temperature, humidity and carbon dioxide by using the 1-wire bus network which consist of 1-wire bus temperature sensor, 1-wire bus humidity sensor, Analog-to-Digital Converter(ADC), CO2 sensor and intelligent battery monitor.
文摘In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.