A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temper...A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.展开更多
An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the prop...An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the proposed approach divides parameters of a predictivemodel into the time invariant and time-varying ones, which are treated respectively by offline andonline identification algorithms. Therefore, both the reliability and accuracy of the predictivemodel are improved. Two simulation examples of control of a fixed bed reactor show that this newalgorithm is not only reliable and stable in the case of uncertainties and abnormal disturbances,but also adaptable to slow time varying processes.展开更多
The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal econo...The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal economic design, the dual-composition control structure and dual-temperature control structure are designed respectively for the benzene chlorine consecutive reactive distillation process. The effectiveness and robustness are analyzed comparably for the disturbance resistance in terms of changes of production rate and feed composition. Results show that dual-temperature control with propose selection of tray temperatures and the optimal profile of the set point can provide better transient process performance than the composition control structure.展开更多
The focus of this paper is to investigate different control structures(single-loop PI control) for a dividing wall(Petlyuk) column for separating ethanol, n-propanol and n-butanol. Four control structures are studied....The focus of this paper is to investigate different control structures(single-loop PI control) for a dividing wall(Petlyuk) column for separating ethanol, n-propanol and n-butanol. Four control structures are studied. All the results are simulations based on Aspen Plus. Control structure 1(CS1) is stabilizing control structure with only temperature controllers. CS2, CS3 and CS4, containing also composition controllers, are introduced to reduce the steady state composition deviations. CS2 adds a distillate composition controller(CCDB) on top of CS1. CS3 is much more complicated with three temperature-composition cascade controllers and in addition a selector to the reboiler duty to control the maximum controller output of light impurity composition control in side stream and bottom impurity control in the prefractionator. CS4 adds another high selector to control the light impurity in the sidestream. Surprisingly, when considering the dynamic and even steady state performance of the proposed control structures, CS1 proves to be the best control structure to handle feed disturbances inserted into the three-product Petlyuk column.展开更多
Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating t...Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.展开更多
The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monito...The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.展开更多
基金Supported by the Research Grants of the Research Council of Malaya
文摘A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.
基金Supported by the National Natural Science Foundation of China (No. 20206028) and the Qingdao Municipal Major Lab of Industry Information Technology.
文摘An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the proposed approach divides parameters of a predictivemodel into the time invariant and time-varying ones, which are treated respectively by offline andonline identification algorithms. Therefore, both the reliability and accuracy of the predictivemodel are improved. Two simulation examples of control of a fixed bed reactor show that this newalgorithm is not only reliable and stable in the case of uncertainties and abnormal disturbances,but also adaptable to slow time varying processes.
基金Supported by the National Natural Science Foundation of China(61203020,21276126)Jiangsu Province Natural Science Foundation(BK2011795)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE18B01)
文摘The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal economic design, the dual-composition control structure and dual-temperature control structure are designed respectively for the benzene chlorine consecutive reactive distillation process. The effectiveness and robustness are analyzed comparably for the disturbance resistance in terms of changes of production rate and feed composition. Results show that dual-temperature control with propose selection of tray temperatures and the optimal profile of the set point can provide better transient process performance than the composition control structure.
基金Supported by the National Basic Research Program of China(973 Program:2012CB720500)the National Supporting Research Program of China(Grant2013BAA03B01)+2 种基金the National Natural Science Foundation of China(21176178)the China Scholarship Council(201506250011)the China Postdoctoral Science Foundation(2017M620587)
文摘The focus of this paper is to investigate different control structures(single-loop PI control) for a dividing wall(Petlyuk) column for separating ethanol, n-propanol and n-butanol. Four control structures are studied. All the results are simulations based on Aspen Plus. Control structure 1(CS1) is stabilizing control structure with only temperature controllers. CS2, CS3 and CS4, containing also composition controllers, are introduced to reduce the steady state composition deviations. CS2 adds a distillate composition controller(CCDB) on top of CS1. CS3 is much more complicated with three temperature-composition cascade controllers and in addition a selector to the reboiler duty to control the maximum controller output of light impurity composition control in side stream and bottom impurity control in the prefractionator. CS4 adds another high selector to control the light impurity in the sidestream. Surprisingly, when considering the dynamic and even steady state performance of the proposed control structures, CS1 proves to be the best control structure to handle feed disturbances inserted into the three-product Petlyuk column.
文摘Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303094)International Science and Technology Cooperation Project of China(2012DFA31120)National Key Technology Research and Development Program(2012BAD14B15)
文摘The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.