Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted w...Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.展开更多
It is still very difficult for researchers and engineers to implement the simulation analysis including a complete process and a full model with the complicated arch dam and the foundation, and to evaluate the crackin...It is still very difficult for researchers and engineers to implement the simulation analysis including a complete process and a full model with the complicated arch dam and the foundation, and to evaluate the cracking potential in the construction and service periods. To take Xiaowan project of China for an example, a practical system of simulation feedback analysis, a specific cracking criterion, and a resolution for the conflicting requirements of temperature and stress/strain simulation are presented, which are put into a successful practice. The simulation results of temperature, stress, and cracking are identical well with the monitor data. A modified temperature control measure is propounded, and the significant effect is gained by adopting the new scheme.展开更多
基金Project(2019QZKK0905)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,ChinaProject(41901074)supported by the National Natural Science Foundation of China+2 种基金Project(2020A1515010745)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(SKLFSE201810)supported by the Open Fund of the State Key Laboratory of Frozen Soil Engineering,ChinaProject(2019MS119)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 51079109)
文摘It is still very difficult for researchers and engineers to implement the simulation analysis including a complete process and a full model with the complicated arch dam and the foundation, and to evaluate the cracking potential in the construction and service periods. To take Xiaowan project of China for an example, a practical system of simulation feedback analysis, a specific cracking criterion, and a resolution for the conflicting requirements of temperature and stress/strain simulation are presented, which are put into a successful practice. The simulation results of temperature, stress, and cracking are identical well with the monitor data. A modified temperature control measure is propounded, and the significant effect is gained by adopting the new scheme.