This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major find...This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, average temperature in summer, and average temperature in spring. The average annual temperature and annual precipi- tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita- tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob- served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.展开更多
Gamasyab River, which is the biggest river of Hamadan Province, is sourced from Karstic Springs in Nahavand Township Southern Mountainous Region and supplies a major part of water needs of the region. In this research...Gamasyab River, which is the biggest river of Hamadan Province, is sourced from Karstic Springs in Nahavand Township Southern Mountainous Region and supplies a major part of water needs of the region. In this research seasonal variation of water quality and also the degree of pollution related to Gamasyab River water have been assessed. First the general status of the river was studied and four sampling stations were determined. In this research, the quality of river water including Dissolved Oxygen (DO), five days Biochemical Oxygen Demand (BOD)5, Chemical Oxygen Demand (COD), Nitrate, phosphate, temperature, Total Hardness(TH), Total Suspended Solid (TSS), Total Dissolved Solid (TDS) and PH have been determined and assessed on a monthly basis within a five years period. The results were reported as seasonally and presented using statistical tables and graphs. These results showed that Nitrate concentration in Gamasyab River is strongly depending on distance from Gamasyab spring. By increasing the distance from Gamasyab spring, nitrate concentration increased. The amount of DO in the river water is stable in each station within the year. Air temperature changes have had no effect in the amount of DO. Therefore, it is recommended that the river pollution control plans be implemented more serious than before, non point source pollution related to agricultural activities be managed and prevent from pouring untreated rural wastewaters to the mentioned river.展开更多
基金Under the auspices of Second-stage Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-XB2-03)the major direction of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW- 127)Shanghai Academic Discipline Project (Human Geography) (No. B410)
文摘This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, average temperature in summer, and average temperature in spring. The average annual temperature and annual precipi- tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita- tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob- served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.
文摘Gamasyab River, which is the biggest river of Hamadan Province, is sourced from Karstic Springs in Nahavand Township Southern Mountainous Region and supplies a major part of water needs of the region. In this research seasonal variation of water quality and also the degree of pollution related to Gamasyab River water have been assessed. First the general status of the river was studied and four sampling stations were determined. In this research, the quality of river water including Dissolved Oxygen (DO), five days Biochemical Oxygen Demand (BOD)5, Chemical Oxygen Demand (COD), Nitrate, phosphate, temperature, Total Hardness(TH), Total Suspended Solid (TSS), Total Dissolved Solid (TDS) and PH have been determined and assessed on a monthly basis within a five years period. The results were reported as seasonally and presented using statistical tables and graphs. These results showed that Nitrate concentration in Gamasyab River is strongly depending on distance from Gamasyab spring. By increasing the distance from Gamasyab spring, nitrate concentration increased. The amount of DO in the river water is stable in each station within the year. Air temperature changes have had no effect in the amount of DO. Therefore, it is recommended that the river pollution control plans be implemented more serious than before, non point source pollution related to agricultural activities be managed and prevent from pouring untreated rural wastewaters to the mentioned river.