Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of...Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of temperature,initial dry density,and quartz sand content on the swelling deformation characteristic of compacted bentonite specimens was analyzed.Results indicate that the swelling deformation process is accelerated,and the maximum swelling strain increases with the increase in temperature,while the maximum swelling strain tends to be stable with increasing temperature.In the meantime,the temperature effects depend on both of the sand content and the initial dry density of the specimens,the increases of the maximum swelling strain induced by increasing temperature,are enlarged by increasing sand content or initial dry density.Adding of quartz sand to bentonite not only influences the integrality of bentonite specimen,but also increase the microfissuring in area on quartz sand,which are advantageous to the heat transfer,leading to the increase of swelling deformation capacity of the specimen.The increased dry density relatively increases the bentonite content,so the swelling property is enhanced.However,no change on mineral composition of bentonite was observed when temperature was changed from 20 to 90°C.展开更多
Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively...Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.展开更多
Using the temperature gradient which was proposed by continuously measuring flat steel box girder of Runyang Bridge, temperature effects of flat steel box girder were studied for Taizhou Bridge. With three temperature...Using the temperature gradient which was proposed by continuously measuring flat steel box girder of Runyang Bridge, temperature effects of flat steel box girder were studied for Taizhou Bridge. With three temperature gradient models (JTG D60--2004 specification, BS5400 specification and the temperature gradient which was proposed in this paper), the stress of control sections was calculated by finite element program ANSYS. The calculated result indicated that the temperature gradient that was put forward in JTG D60-2004 specification and BS5400 specification for calculating the stress of fiat steel box girder was not suitable to apply to fiat steel box girder. The temperature gradient on flat steel box girder which was proposed in this paper was reasonable.展开更多
Treeline ecotone dynamics of Abies spectabilis (D. Don) Mirb. in the Barun valley, Makalu Barun National Park, eastern Nepal Himalaya were studied by establishing seven plots (20 m x variable length) from the fore...Treeline ecotone dynamics of Abies spectabilis (D. Don) Mirb. in the Barun valley, Makalu Barun National Park, eastern Nepal Himalaya were studied by establishing seven plots (20 m x variable length) from the foresfline to the tree species limit: three plots on the south- and north-facing slopes each (S1-S3, N1-N3), and one plot on the east- facing slope (E) in the relatively undisturbed forests. A dendroecological method was used to study treeline advance rate and recruitment pattern. In all the plots, most trees established in the early 20th century, and establishment in the second half of the 20th century was confined to the foresfline area. Treeline position has not advanced substantially in the Barun valley, with 0nly 22 m average elevational shift in the last 13o years, and with average current shifting rate of 14 cm/yr. Moreover, no significant relationship was found between tree age and elevation on the south-, north-, and east-facing slopes. The number of seedlings and saplings in near the treeline area was negligible compared to that near the foresfline area. Therefore, A. spectabilis treeline response to the temperature change was slow, despite the increasing temperature trend in the region. Beside the temperature change, factors such as high inter-annual variability in temperature, dense shrub cover, and local topography also play an important role in treeline advance and controlling recruitment pattern above the treeline.展开更多
In current research, MWCNT-SiO2/oil hybrid nano-lubricant viscosity is experimentally examined. By dispersing 0.05%, 0.1%, 0.2%, 0.4%, 0.8% and 1% volume of MWCNTs and SiO2 nanopartide into the engine oil SAE 20W50, t...In current research, MWCNT-SiO2/oil hybrid nano-lubricant viscosity is experimentally examined. By dispersing 0.05%, 0.1%, 0.2%, 0.4%, 0.8% and 1% volume of MWCNTs and SiO2 nanopartide into the engine oil SAE 20W50, the temperature and solid volume fraction consequences were studied. At 40 to 100 ℃ temperature, the viscosities were assessed. The results indicated Newtonian behavior for the hybrid nano-lubricant. Moreover, solid volume fraction augmentation and temperature enhanced the viscosity enhancement of hybrid nano-lubricant. At highest solid volume fraction and temperature, nano-lubricant viscosity was 171% greater compared to pure 20W50. Existed models lack the ability to predict the hybrid nano-lubricant viscosity. Thus, a new correlation regarding solid volume fraction and temperature was suggested with R-squared of 0.9943.展开更多
In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inhere...In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.展开更多
Through laboratory tests and theoretical analysis a mathematical model of bentonite burn out in the poured mould has been established, and it has been found that the bentonite burn out ra...Through laboratory tests and theoretical analysis a mathematical model of bentonite burn out in the poured mould has been established, and it has been found that the bentonite burn out rate is an exponential function of heating temperature and time of the mould. Related to the temperature field the bentonite burn out field in the poured mould has been simulated numerically, which can be used for determining the bentonite burn out of moulding sand.展开更多
Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthe...Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.展开更多
An interfacial study between molten iron and the prereduced ilmenite with carbon was conducted at different melting temperatures by the sessile droplet method.The wetting characteristics between molten iron and the pr...An interfacial study between molten iron and the prereduced ilmenite with carbon was conducted at different melting temperatures by the sessile droplet method.The wetting characteristics between molten iron and the prereduced ilmenites with carbon were investigated by measuring contact angle of the droplet of molten iron on the prereduced ilmenite substrate.The images of the interface were also examined by the optical microscope and SEM equipped with EDS.The volume of molten iron increased with the melting temperature increasing when titania or high-content titania slag was used as the substrate.The contact angle decreased with the melting temperature increasing and it was independent on time at constant temperature.The contact angle was positively correlated with the reduction degree of the ilmenite,but the work of adhesion was negatively correlated with it.Higher smelting temperature was beneficial to the separation of iron and Ti oxides.The permeability of molten iron into the prereduced ilmenite with carbon was more obvious with reduction degree increasing owing to the high porosity of prereduced ilmenite.展开更多
Sorption of radioisotopes onto a stable colloidal phase may significantly enhance their transport in groundwater. The adsorption of cesium (Cs+) and strontium (St^++ ) from aqueous solutions onto commercial nat...Sorption of radioisotopes onto a stable colloidal phase may significantly enhance their transport in groundwater. The adsorption of cesium (Cs+) and strontium (St^++ ) from aqueous solutions onto commercial natural bentonite (NB) was studied as a function of contact time, temperature, bentonite mass and bentonite treatment (washing and heat treatment) on the uptake of these cations, independently. The heat treatment was 700 ℃ and washed bentonite samples termed by CB and WB respectively. Batch experiments results showed that the adsorptive capacity of NB at 293,298 and 308 K for Cs^+ and Sr^++ were 110,105, 104 and 35, 33.6, 31.8 mg/g respectively. The experimental results for strontium adsorption 293, 298 and 308 K fit well to a Langmuirian and Frendlich type isotherm but cesium adsorption fit better with Langmuir than Frendlich isotherm. Thermodynamic functions, the change of free energy (△G°), enthalpy (△H°) and entropy (AS°) of adsorption were also calculated for each cation. These parameters showed that the adsorption of Cs^+ and Sr^++ onto N B was feasible, spontaneous and exothermic. The adsorption of Sr^++ and Cs^+ increases with increasing pH (pH 2-8) and follows pseudo-second order kinetics reaching equilibrium after an equilibration time of 300 and 5 min respectively. The adsorbed amount of Cs^+ not affected by washing of NB but affected by the heat treatment. However the adsorbed amount of Sr^++ on WB was higher than NB and CB.展开更多
To solve the problem of the low ash fusion point of briquette, this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash, ...To solve the problem of the low ash fusion point of briquette, this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash, which will create favorable conditions for moving bed continuous gasification of briquette with oxygen-rich air. The effects of A1203, SiO2, kaolin, dry powder and bentonite on ash fusibility temperatures were studied, based upon the relationship between briquette ash components and ash fusibility. The results show that the increasing of ash fusibility temperatures by adding the same amount (11%, w) of refractory agents follows the sequence of SiO2, bentonite, dry powder, kaolin, A1203, with the softening temperatures being elevated by 37.2, 57.6, 60.4, 82.6 and 104.4℃. With the same ratio of SIO2/A1203 in briquette, adding the A1203 component is more effective than SiO2 for raising ash fusibility temperatures. In this paper, inexpensive kaolin and bentonite rich in A1203 are found to be better refractory agents, and the suitable adding quantities are 9% and 11%, respectively.展开更多
Development of gas turbine oils that can be used in higher temperature conditions remains the greatest technological challenge. Though the maximum operating temperature of conventional lubricating oils is generally se...Development of gas turbine oils that can be used in higher temperature conditions remains the greatest technological challenge. Though the maximum operating temperature of conventional lubricating oils is generally set around 100 ℃, or 140 ℃ for scavenged oils, it is predicted that the future will require oils to function at 200 ℃ or above. To find a clue to developing oils that can be used at higher temperatures, this study attempted to estimate service lives and operating temperature ranges of certain oils, including oils conforming to MIL-PRF-23699, which are deemed promising candidates for high-temperature applications, by analyzing their reaction rates of degradation and degeneration by oxidation. Among a number of methods used in the analyses of reaction rates, this study chose thermo-gravimetry (TG), with which estimations can be made relatively easily.展开更多
Na-type bentonite is commonly used as a tunnel backfilling material to prevent groundwater and radionuclide migration during the construction of a geological disposal system for high-level radioactive waste in Japan. ...Na-type bentonite is commonly used as a tunnel backfilling material to prevent groundwater and radionuclide migration during the construction of a geological disposal system for high-level radioactive waste in Japan. However, host rock fractures with strong water flow can develop groundwater paths in the backfilling material. Especially, the alteration to Ca-type bentonite causes degradation of the barrier performance and accelerates the development of groundwater paths. Additionally, using cementitious materials gradually changes pH between 13 and 8. High alkaline groundwater results in high solubility of silicic acid; therefore, silicic acid is eluted from the host rock. Downstream, in the low alkaline area, the groundwater becomes supersaturated in silicic acid. This acid is deposited on Ca-type bentonite, thus leading to the clogging of the groundwater paths. In the present study, we investigate the silicic acid deposition rate on Ca-type bentonite under 288-323 K for depths greater or equal to 500 m. The results indicate that temperature does not affect the silicic acid deposition rate up to 323 K. However, in this temperature range, the deposition of silicic acid on Ca-type bentonite in backfilled tunnels results in clogging of the flow paths.展开更多
This paper focused on the sessile droplet freezing and ice adhesion on aluminum with different wettability (hydrophilic, com- mon hydrophobic, and superhydrophobic surfaces, coded as HIS, CHS, SHS, respectively) ove...This paper focused on the sessile droplet freezing and ice adhesion on aluminum with different wettability (hydrophilic, com- mon hydrophobic, and superhydrophobic surfaces, coded as HIS, CHS, SHS, respectively) over a surface temperature range of -9℃ to -19℃. It was found that SHS could retard the sessile droplet freezing and lower the ice adhesion probably due to the interfacial air pockets (IAPs) on water/SHS interface. However, as surface temperature decreasing, some IAPs were squeezed out and such freezing retarding and adhesion lowering effect for SHS was reduced greatly. For a surface temperature of-19℃, ice adhesion on SHS was even greater than that on CHS. To discover the reason for the squeezing out of lAPs, forces applied to the suspended water on IAPs were analyzed and it was found that the stability of IAPs was associated with surface mi- cro-structures and surface temperature. These findings might be helpful to designing of SHS with good anti-icing properties.展开更多
The temperature field variation law and distribution characteristics of an orthotropic flat steel box girder under sunny conditions were analyzed through a field temperature test on the steel box girder of the operati...The temperature field variation law and distribution characteristics of an orthotropic flat steel box girder under sunny conditions were analyzed through a field temperature test on the steel box girder of the operational Runyang Yangtze River Bridge(the suspension bridge part).Function optimization fitting and error analysis of the test data were conducted.A temperature gradient distribution curve applicable to a hexagonal flat steel box girder was proposed.Based on the measurement results,the temperature effect of an orthotropic flat steel box girder was analyzed using finite element method and the effects of different temperature gradient modes on the mechanical characteristics and stress distribution of the steel box girder were compared.Under sunny conditions,heat conduction in the flat steel box girder structure shows distinct "box-room effect" characteristics,and the actual temperature gradient distribution is inconsistent with the one suggested by the existing standards.The thermal stress of a steel box girder calculated from the measured temperature gradient mode exceeds that calculated from the standard,and the intensity approximates that under the action of designed vehicle loads.The temperature-induced stress is distributed centrally near the manufacturing welds of the orthotropic steel box girder,which should be considered in design,construction and research.Results from this study could supplement the existing bridge and culvert design standards.展开更多
基金Project (41402260) supported by the National Natural Science Foundation of ChinaProject (20136101120006) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of temperature,initial dry density,and quartz sand content on the swelling deformation characteristic of compacted bentonite specimens was analyzed.Results indicate that the swelling deformation process is accelerated,and the maximum swelling strain increases with the increase in temperature,while the maximum swelling strain tends to be stable with increasing temperature.In the meantime,the temperature effects depend on both of the sand content and the initial dry density of the specimens,the increases of the maximum swelling strain induced by increasing temperature,are enlarged by increasing sand content or initial dry density.Adding of quartz sand to bentonite not only influences the integrality of bentonite specimen,but also increase the microfissuring in area on quartz sand,which are advantageous to the heat transfer,leading to the increase of swelling deformation capacity of the specimen.The increased dry density relatively increases the bentonite content,so the swelling property is enhanced.However,no change on mineral composition of bentonite was observed when temperature was changed from 20 to 90°C.
基金Projects(40772180, 40572161, 40802064) supported by the National Natural Science Foundation of ChinaProject ([2007]831) supported by Commission of Science, Technology and Industry for National Defense of China+3 种基金Project(07JJ4012) supported by Hunan Provincial Natural Science Foundation of ChinaProject(20080430680) supported by China Postdoctoral Science FoundationProject(08R214155) supported by Shanghai Postdoctoral Scientific Program of ChinaProject(B308) supported by Shanghai Leading Academic Discipline Project of China
文摘Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.
文摘Using the temperature gradient which was proposed by continuously measuring flat steel box girder of Runyang Bridge, temperature effects of flat steel box girder were studied for Taizhou Bridge. With three temperature gradient models (JTG D60--2004 specification, BS5400 specification and the temperature gradient which was proposed in this paper), the stress of control sections was calculated by finite element program ANSYS. The calculated result indicated that the temperature gradient that was put forward in JTG D60-2004 specification and BS5400 specification for calculating the stress of fiat steel box girder was not suitable to apply to fiat steel box girder. The temperature gradient on flat steel box girder which was proposed in this paper was reasonable.
文摘Treeline ecotone dynamics of Abies spectabilis (D. Don) Mirb. in the Barun valley, Makalu Barun National Park, eastern Nepal Himalaya were studied by establishing seven plots (20 m x variable length) from the foresfline to the tree species limit: three plots on the south- and north-facing slopes each (S1-S3, N1-N3), and one plot on the east- facing slope (E) in the relatively undisturbed forests. A dendroecological method was used to study treeline advance rate and recruitment pattern. In all the plots, most trees established in the early 20th century, and establishment in the second half of the 20th century was confined to the foresfline area. Treeline position has not advanced substantially in the Barun valley, with 0nly 22 m average elevational shift in the last 13o years, and with average current shifting rate of 14 cm/yr. Moreover, no significant relationship was found between tree age and elevation on the south-, north-, and east-facing slopes. The number of seedlings and saplings in near the treeline area was negligible compared to that near the foresfline area. Therefore, A. spectabilis treeline response to the temperature change was slow, despite the increasing temperature trend in the region. Beside the temperature change, factors such as high inter-annual variability in temperature, dense shrub cover, and local topography also play an important role in treeline advance and controlling recruitment pattern above the treeline.
文摘In current research, MWCNT-SiO2/oil hybrid nano-lubricant viscosity is experimentally examined. By dispersing 0.05%, 0.1%, 0.2%, 0.4%, 0.8% and 1% volume of MWCNTs and SiO2 nanopartide into the engine oil SAE 20W50, the temperature and solid volume fraction consequences were studied. At 40 to 100 ℃ temperature, the viscosities were assessed. The results indicated Newtonian behavior for the hybrid nano-lubricant. Moreover, solid volume fraction augmentation and temperature enhanced the viscosity enhancement of hybrid nano-lubricant. At highest solid volume fraction and temperature, nano-lubricant viscosity was 171% greater compared to pure 20W50. Existed models lack the ability to predict the hybrid nano-lubricant viscosity. Thus, a new correlation regarding solid volume fraction and temperature was suggested with R-squared of 0.9943.
基金Project (No. DEARS/CASR/R-01/2001/D-934 (30)) supported by Directorate of Advisory Extension and Research Services (DAERS), Committee for Advanced Studies & Research (CASR), BUET, Dhaka, Bangladesh
文摘In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intru- siveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimen- sional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.
文摘Through laboratory tests and theoretical analysis a mathematical model of bentonite burn out in the poured mould has been established, and it has been found that the bentonite burn out rate is an exponential function of heating temperature and time of the mould. Related to the temperature field the bentonite burn out field in the poured mould has been simulated numerically, which can be used for determining the bentonite burn out of moulding sand.
文摘Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.
基金Project(2008AA06Z1071) supported by the National High-tech Research and Development Program of China Project(50474043) supported by the National Natural Science Foundation of China
文摘An interfacial study between molten iron and the prereduced ilmenite with carbon was conducted at different melting temperatures by the sessile droplet method.The wetting characteristics between molten iron and the prereduced ilmenites with carbon were investigated by measuring contact angle of the droplet of molten iron on the prereduced ilmenite substrate.The images of the interface were also examined by the optical microscope and SEM equipped with EDS.The volume of molten iron increased with the melting temperature increasing when titania or high-content titania slag was used as the substrate.The contact angle decreased with the melting temperature increasing and it was independent on time at constant temperature.The contact angle was positively correlated with the reduction degree of the ilmenite,but the work of adhesion was negatively correlated with it.Higher smelting temperature was beneficial to the separation of iron and Ti oxides.The permeability of molten iron into the prereduced ilmenite with carbon was more obvious with reduction degree increasing owing to the high porosity of prereduced ilmenite.
文摘Sorption of radioisotopes onto a stable colloidal phase may significantly enhance their transport in groundwater. The adsorption of cesium (Cs+) and strontium (St^++ ) from aqueous solutions onto commercial natural bentonite (NB) was studied as a function of contact time, temperature, bentonite mass and bentonite treatment (washing and heat treatment) on the uptake of these cations, independently. The heat treatment was 700 ℃ and washed bentonite samples termed by CB and WB respectively. Batch experiments results showed that the adsorptive capacity of NB at 293,298 and 308 K for Cs^+ and Sr^++ were 110,105, 104 and 35, 33.6, 31.8 mg/g respectively. The experimental results for strontium adsorption 293, 298 and 308 K fit well to a Langmuirian and Frendlich type isotherm but cesium adsorption fit better with Langmuir than Frendlich isotherm. Thermodynamic functions, the change of free energy (△G°), enthalpy (△H°) and entropy (AS°) of adsorption were also calculated for each cation. These parameters showed that the adsorption of Cs^+ and Sr^++ onto N B was feasible, spontaneous and exothermic. The adsorption of Sr^++ and Cs^+ increases with increasing pH (pH 2-8) and follows pseudo-second order kinetics reaching equilibrium after an equilibration time of 300 and 5 min respectively. The adsorbed amount of Cs^+ not affected by washing of NB but affected by the heat treatment. However the adsorbed amount of Sr^++ on WB was higher than NB and CB.
文摘To solve the problem of the low ash fusion point of briquette, this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash, which will create favorable conditions for moving bed continuous gasification of briquette with oxygen-rich air. The effects of A1203, SiO2, kaolin, dry powder and bentonite on ash fusibility temperatures were studied, based upon the relationship between briquette ash components and ash fusibility. The results show that the increasing of ash fusibility temperatures by adding the same amount (11%, w) of refractory agents follows the sequence of SiO2, bentonite, dry powder, kaolin, A1203, with the softening temperatures being elevated by 37.2, 57.6, 60.4, 82.6 and 104.4℃. With the same ratio of SIO2/A1203 in briquette, adding the A1203 component is more effective than SiO2 for raising ash fusibility temperatures. In this paper, inexpensive kaolin and bentonite rich in A1203 are found to be better refractory agents, and the suitable adding quantities are 9% and 11%, respectively.
文摘Development of gas turbine oils that can be used in higher temperature conditions remains the greatest technological challenge. Though the maximum operating temperature of conventional lubricating oils is generally set around 100 ℃, or 140 ℃ for scavenged oils, it is predicted that the future will require oils to function at 200 ℃ or above. To find a clue to developing oils that can be used at higher temperatures, this study attempted to estimate service lives and operating temperature ranges of certain oils, including oils conforming to MIL-PRF-23699, which are deemed promising candidates for high-temperature applications, by analyzing their reaction rates of degradation and degeneration by oxidation. Among a number of methods used in the analyses of reaction rates, this study chose thermo-gravimetry (TG), with which estimations can be made relatively easily.
文摘Na-type bentonite is commonly used as a tunnel backfilling material to prevent groundwater and radionuclide migration during the construction of a geological disposal system for high-level radioactive waste in Japan. However, host rock fractures with strong water flow can develop groundwater paths in the backfilling material. Especially, the alteration to Ca-type bentonite causes degradation of the barrier performance and accelerates the development of groundwater paths. Additionally, using cementitious materials gradually changes pH between 13 and 8. High alkaline groundwater results in high solubility of silicic acid; therefore, silicic acid is eluted from the host rock. Downstream, in the low alkaline area, the groundwater becomes supersaturated in silicic acid. This acid is deposited on Ca-type bentonite, thus leading to the clogging of the groundwater paths. In the present study, we investigate the silicic acid deposition rate on Ca-type bentonite under 288-323 K for depths greater or equal to 500 m. The results indicate that temperature does not affect the silicic acid deposition rate up to 323 K. However, in this temperature range, the deposition of silicic acid on Ca-type bentonite in backfilled tunnels results in clogging of the flow paths.
基金supported by the National Natural Science Foundation of China(Grant Nos.21203089 and 51263018)International Science and Technology Cooperation Program of China(Grant No.2012DFA51200)+1 种基金Science and Technology Project of Jiangxi Province(Grant No.20123BDH80015)the Open Fund of Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology(Grant No.JSBEET1224)
文摘This paper focused on the sessile droplet freezing and ice adhesion on aluminum with different wettability (hydrophilic, com- mon hydrophobic, and superhydrophobic surfaces, coded as HIS, CHS, SHS, respectively) over a surface temperature range of -9℃ to -19℃. It was found that SHS could retard the sessile droplet freezing and lower the ice adhesion probably due to the interfacial air pockets (IAPs) on water/SHS interface. However, as surface temperature decreasing, some IAPs were squeezed out and such freezing retarding and adhesion lowering effect for SHS was reduced greatly. For a surface temperature of-19℃, ice adhesion on SHS was even greater than that on CHS. To discover the reason for the squeezing out of lAPs, forces applied to the suspended water on IAPs were analyzed and it was found that the stability of IAPs was associated with surface mi- cro-structures and surface temperature. These findings might be helpful to designing of SHS with good anti-icing properties.
基金supported by the Engineering Section of the Jiangsu Runyang Bridge Development Co.,Ltdthe National Science & Technology Support Program of China (Grant No. 2009BAG15B03)the National Science Foundation of China (Grant No. 51078080)
文摘The temperature field variation law and distribution characteristics of an orthotropic flat steel box girder under sunny conditions were analyzed through a field temperature test on the steel box girder of the operational Runyang Yangtze River Bridge(the suspension bridge part).Function optimization fitting and error analysis of the test data were conducted.A temperature gradient distribution curve applicable to a hexagonal flat steel box girder was proposed.Based on the measurement results,the temperature effect of an orthotropic flat steel box girder was analyzed using finite element method and the effects of different temperature gradient modes on the mechanical characteristics and stress distribution of the steel box girder were compared.Under sunny conditions,heat conduction in the flat steel box girder structure shows distinct "box-room effect" characteristics,and the actual temperature gradient distribution is inconsistent with the one suggested by the existing standards.The thermal stress of a steel box girder calculated from the measured temperature gradient mode exceeds that calculated from the standard,and the intensity approximates that under the action of designed vehicle loads.The temperature-induced stress is distributed centrally near the manufacturing welds of the orthotropic steel box girder,which should be considered in design,construction and research.Results from this study could supplement the existing bridge and culvert design standards.