In the classical formulation, the problem of thermal explosion in a finite volume of the reacting material in the presence of harmonic oscillations of the ambient temperature has been solved. It is shown that in the o...In the classical formulation, the problem of thermal explosion in a finite volume of the reacting material in the presence of harmonic oscillations of the ambient temperature has been solved. It is shown that in the oscillation periods, commensurate with the adiabatic induction period of thermal explosion, implement a kind of resonance which corresponding with average ambient temperature. At both high and very low frequencies oscillations at ambient temperature, their influence on the critical condition and on the induction period of thermal explosion is negligible. However, at low-frequencies influence of ambient temperature oscillations, even a relatively low amplitude, on critical condition and especially on induction period of thermal explosion, can be very strong.展开更多
A new bromethyl-substituted molecular rotor, [Cu(dabcoCH2Br)(H2O)Br3] (dabcoCH2Br+=1-(2-bromethyl)-1,4-diazoniabi- cyclo[2.2.2]octane cation), which belongs to a family of balomethyl-substituted molecular rot...A new bromethyl-substituted molecular rotor, [Cu(dabcoCH2Br)(H2O)Br3] (dabcoCH2Br+=1-(2-bromethyl)-1,4-diazoniabi- cyclo[2.2.2]octane cation), which belongs to a family of balomethyl-substituted molecular rotors, was synthesized and struc- turally characterized. The reversible phase transition at ca. 250 K was well established for this molecular rotor by thermal analyses, variable-temperature X-ray diffraction, and variable temperature dielectric measurements. The order-disorder trans- formation of the rotator part (dabco moiety) causes ferroelastic phase transition with an Aizu notation of mmmF2/m from high- temperature orthorhombic phase (Pbnm) to low-temperature monoclinic phase (P21/n). More important, in reference to the density functional theory calculations and structural analyses, the key factors to tune the phase transition behaviors were dis- cussed in detail for this family of halomethyl-substituted molecular rotors.展开更多
文摘In the classical formulation, the problem of thermal explosion in a finite volume of the reacting material in the presence of harmonic oscillations of the ambient temperature has been solved. It is shown that in the oscillation periods, commensurate with the adiabatic induction period of thermal explosion, implement a kind of resonance which corresponding with average ambient temperature. At both high and very low frequencies oscillations at ambient temperature, their influence on the critical condition and on the induction period of thermal explosion is negligible. However, at low-frequencies influence of ambient temperature oscillations, even a relatively low amplitude, on critical condition and especially on induction period of thermal explosion, can be very strong.
基金supported by the National Natural Science Foundation of China(21290173,21301198)the National Basic Research Program of China(2012CB821706)the Natural Science Foundation of Guangdong(S2012030006240)
文摘A new bromethyl-substituted molecular rotor, [Cu(dabcoCH2Br)(H2O)Br3] (dabcoCH2Br+=1-(2-bromethyl)-1,4-diazoniabi- cyclo[2.2.2]octane cation), which belongs to a family of balomethyl-substituted molecular rotors, was synthesized and struc- turally characterized. The reversible phase transition at ca. 250 K was well established for this molecular rotor by thermal analyses, variable-temperature X-ray diffraction, and variable temperature dielectric measurements. The order-disorder trans- formation of the rotator part (dabco moiety) causes ferroelastic phase transition with an Aizu notation of mmmF2/m from high- temperature orthorhombic phase (Pbnm) to low-temperature monoclinic phase (P21/n). More important, in reference to the density functional theory calculations and structural analyses, the key factors to tune the phase transition behaviors were dis- cussed in detail for this family of halomethyl-substituted molecular rotors.