This paper investigates the geotechnical behavior of uranium mill tailings from Saskatchewan, Canada.The 4% tailings were well-graded with 29% fines whereas the 5% and 6% tailings were gap-graded with 49% fines. All s...This paper investigates the geotechnical behavior of uranium mill tailings from Saskatchewan, Canada.The 4% tailings were well-graded with 29% fines whereas the 5% and 6% tailings were gap-graded with 49% fines. All samples exhibited a negligible strength(0.4 k Pa) up to 60% solids, followed by a rapid increase. The 4% tailings exhibited a lower rate and amount of settlement than 5% and 6% tailings. The kidecreased from 10^(-2)to 10^(-4)m/s with a decrease in eifrom 16 to 4 and a decrease in ef from 8 to 4 such that 4% tailings showed one order of magnitude lower values than the 5% and 6%tailings. The settling potential decreased ten times(50%–5%) for 4% tailings and four times(60%–15%)for 5% and 6% tailings. The effective stress increased from 80 to 260 Pa in the settling tests. The 4%tailings were less prone to segregation when compared with 5% and 6% tailings. The average solids content after settling was 35% for 4% tailings, 40% for 5% tailings and 39% for 6% tailings with a solids content deviation of ±3%, ±8%, ±6%, respectively. All materials were essentially non-segregating at 40%initial solids.展开更多
Climate change is causing rapid and severe changes to many Earth systems and processes,with widespread cryospheric,ecological,and hydrological impacts globally,and especially in high northern latitudes.This is of majo...Climate change is causing rapid and severe changes to many Earth systems and processes,with widespread cryospheric,ecological,and hydrological impacts globally,and especially in high northern latitudes.This is of major societal concern and there is an urgent need for improved understanding and predictive tools for environmental management.The Changing Cold Regions Network(CCRN)is a Canadian research consortium with a focus to integrate existing and new experimental data with modelling and remote sensing products to understand,diagnose,and predict changing land,water,and climate,and their interactions and feedbacks over the geographic domain of the Mackenzie and Saskatchewan River Basins in Canada.The network operates a set of 14 unique and focused Water,Ecosystem,Cryosphere and Climate(WECC)observatories within this region,which provide opportunities to observe and understand processes and their interaction,as well as develop and test numerical simulation models,and provide validation data for remote sensing products.This paper describes this network and its observational,experimental,and modelling programme.An overview of many of the recent Earth system changes observed across the study region is provided,and some local insights from WECC observatories that may partly explain regional patterns and trends are described.Several of the model products being developed are discussed,and linkages with the local to international user community are reviewed—In particular,the use of WECC data towards model and remote sensing product calibration and validation is highlighted.Some future activities and prospects for the network are also presented at the end of the paper.展开更多
基金the University of Regina for providing laboratory space and computing facilitiesCameco Corporation for material and financial support
文摘This paper investigates the geotechnical behavior of uranium mill tailings from Saskatchewan, Canada.The 4% tailings were well-graded with 29% fines whereas the 5% and 6% tailings were gap-graded with 49% fines. All samples exhibited a negligible strength(0.4 k Pa) up to 60% solids, followed by a rapid increase. The 4% tailings exhibited a lower rate and amount of settlement than 5% and 6% tailings. The kidecreased from 10^(-2)to 10^(-4)m/s with a decrease in eifrom 16 to 4 and a decrease in ef from 8 to 4 such that 4% tailings showed one order of magnitude lower values than the 5% and 6%tailings. The settling potential decreased ten times(50%–5%) for 4% tailings and four times(60%–15%)for 5% and 6% tailings. The effective stress increased from 80 to 260 Pa in the settling tests. The 4%tailings were less prone to segregation when compared with 5% and 6% tailings. The average solids content after settling was 35% for 4% tailings, 40% for 5% tailings and 39% for 6% tailings with a solids content deviation of ±3%, ±8%, ±6%, respectively. All materials were essentially non-segregating at 40%initial solids.
基金NSERC for funding support of the CCRN through its CCAR Initiative
文摘Climate change is causing rapid and severe changes to many Earth systems and processes,with widespread cryospheric,ecological,and hydrological impacts globally,and especially in high northern latitudes.This is of major societal concern and there is an urgent need for improved understanding and predictive tools for environmental management.The Changing Cold Regions Network(CCRN)is a Canadian research consortium with a focus to integrate existing and new experimental data with modelling and remote sensing products to understand,diagnose,and predict changing land,water,and climate,and their interactions and feedbacks over the geographic domain of the Mackenzie and Saskatchewan River Basins in Canada.The network operates a set of 14 unique and focused Water,Ecosystem,Cryosphere and Climate(WECC)observatories within this region,which provide opportunities to observe and understand processes and their interaction,as well as develop and test numerical simulation models,and provide validation data for remote sensing products.This paper describes this network and its observational,experimental,and modelling programme.An overview of many of the recent Earth system changes observed across the study region is provided,and some local insights from WECC observatories that may partly explain regional patterns and trends are described.Several of the model products being developed are discussed,and linkages with the local to international user community are reviewed—In particular,the use of WECC data towards model and remote sensing product calibration and validation is highlighted.Some future activities and prospects for the network are also presented at the end of the paper.