Several newly developed capacitance sensors have simplified real-time determination of soil water content.Previous work has shown that salinity and temperature can affect these sensors,but relatively little has been d...Several newly developed capacitance sensors have simplified real-time determination of soil water content.Previous work has shown that salinity and temperature can affect these sensors,but relatively little has been done to correct these effects.The objectives of this study were to evaluate the effect of media temperature and salinity on the apparent water content measured with a single capacitance sensor(SCS),and to mitigate this effect using a temperature dependent scaled voltage technique under laboratory conditions.A column study was conducted containing two media:pure deionized water and quartz sand under varying water contents(0.05 to 0.30 cm3 cm-3) and salinity(0 to 80 mmol L-1).Media temperature was varied between 5 and 45℃ using an incubator.The SCS probes and thermocouples were placed in the middle of the columns and were logged at an interval of 1 minute.There was strong negative correlation between sensor reading and temperature of deionized water with a rate of-0.779 mV ℃-1.Rates of SCS apparent output were 0.454 and 0.535 mV ℃-1 for air in heating and cooling cycles,respectively.A similar positive correlation with temperature was observed in sand at different water contents.The SCS probe was less sensitive to temperature as salinity and water content increased.Using a temperature-corrected voltage calibration model,the effect of temperature was reduced by 98%.An analytical model for salinity correction was able to minimize the error as low as ± 2% over the salinity level tested.展开更多
A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing probl...A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.展开更多
Abstract: The homogeneous, intensity modulated salinity sensor using the photonic crystal ring resonator (PCRR) is proposed and designed for monitoring the salinity of the seawater from 0% to 100% (0 g/L to 100 g/...Abstract: The homogeneous, intensity modulated salinity sensor using the photonic crystal ring resonator (PCRR) is proposed and designed for monitoring the salinity of the seawater from 0% to 100% (0 g/L to 100 g/L) at 25℃. The concentration of the salinity in the seawater changes the refractive index of the seawater. The change in the refractive index of the seawater brings the change in the output signal intensity of the sensor as the output power and mapping the salinity level, the seawater flows inside the sensor. By detecting the salinity can be evaluated. The proposed sensor is composed of periodic Si rods embedded in an air host with a circular PCRR placed between the inline quasi waveguides. Approximately, 2.69% of output power reduction is observed for every 5% (5 g/L) increase in the salinity as the seawater has a unique refractive index for each salt level. With this underlying principle, the performance of the sensor is analyzed for different temperatures.展开更多
The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then accor...The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.展开更多
基金supported by a grant from the U.S. Department of Agriculture Cooperative State Research,Education and Extension Service,USA (No.2008-34135-19408)
文摘Several newly developed capacitance sensors have simplified real-time determination of soil water content.Previous work has shown that salinity and temperature can affect these sensors,but relatively little has been done to correct these effects.The objectives of this study were to evaluate the effect of media temperature and salinity on the apparent water content measured with a single capacitance sensor(SCS),and to mitigate this effect using a temperature dependent scaled voltage technique under laboratory conditions.A column study was conducted containing two media:pure deionized water and quartz sand under varying water contents(0.05 to 0.30 cm3 cm-3) and salinity(0 to 80 mmol L-1).Media temperature was varied between 5 and 45℃ using an incubator.The SCS probes and thermocouples were placed in the middle of the columns and were logged at an interval of 1 minute.There was strong negative correlation between sensor reading and temperature of deionized water with a rate of-0.779 mV ℃-1.Rates of SCS apparent output were 0.454 and 0.535 mV ℃-1 for air in heating and cooling cycles,respectively.A similar positive correlation with temperature was observed in sand at different water contents.The SCS probe was less sensitive to temperature as salinity and water content increased.Using a temperature-corrected voltage calibration model,the effect of temperature was reduced by 98%.An analytical model for salinity correction was able to minimize the error as low as ± 2% over the salinity level tested.
文摘A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.
文摘Abstract: The homogeneous, intensity modulated salinity sensor using the photonic crystal ring resonator (PCRR) is proposed and designed for monitoring the salinity of the seawater from 0% to 100% (0 g/L to 100 g/L) at 25℃. The concentration of the salinity in the seawater changes the refractive index of the seawater. The change in the refractive index of the seawater brings the change in the output signal intensity of the sensor as the output power and mapping the salinity level, the seawater flows inside the sensor. By detecting the salinity can be evaluated. The proposed sensor is composed of periodic Si rods embedded in an air host with a circular PCRR placed between the inline quasi waveguides. Approximately, 2.69% of output power reduction is observed for every 5% (5 g/L) increase in the salinity as the seawater has a unique refractive index for each salt level. With this underlying principle, the performance of the sensor is analyzed for different temperatures.
基金supported by the National Natural Science Foundation of China(No.61505142)the Tianjin Natural Science Foundation(No.16JCQNJC02100)
文摘The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.