Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which ...Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which was strengthened by fine secondary α platelets forming during aging, exists in all the samples; while primary equiaxed α phase, bent lamellar α phase and α plates are simultaneously or individually present in one sample. The strength of alloy increases proportionally with increasing the content of residual β matrix, which is the result of increasing α/β interphase boundary. The plasticity of alloy has a downward trend as the content of residual β matrix increases. This attributes to the increase of fine secondary α platelets, which are cut by dislocations during the deformation. Additionally, coarse α plates with long axis parallel to the maximum resolved shear stress(MRSS) also reduce the plasticity of TC21 alloy.展开更多
Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile pr...Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile properties were investigated. The results show that the TiAl ingot exhibits good heat workability during containerless near-isothermally forging process, and there are not evident cracks on the surface of as-forged TiAl pancake with a total deformation degree of 60%. The microstructure of the TiAl ingot appears to be typical nearly-lamellar(NL), comprising a great amount of lamellar colonies (α2+γ) and a few equiaxed γ grains. After near-isothermally forging, the as-forged pancake shows primarily fine equiaxed γ grains with an average grain size of 20 μm and some broken lamellar pieces, and some bent lamellas still exist in the hard-deformation zone. Tensile tests at room temperature show that ultimate tensile strength increases from 433 MPa to 573 MPa after forging due to grain refinement effect.展开更多
An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on ...An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations.展开更多
Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequenc...Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.展开更多
Large complex 7A85 aluminum wing-body joint was forged employing isothermal forging process and its mechanical properties were studied.The tensile strength after forging is up to 587.5 MPa in longitudinal direction,15...Large complex 7A85 aluminum wing-body joint was forged employing isothermal forging process and its mechanical properties were studied.The tensile strength after forging is up to 587.5 MPa in longitudinal direction,15% higher than that using free forging.Moreover,the tensile strength of the forging is almost the same in three directions.Isothermal forging also performs well on overall fracture toughness,with a maximum value of 39.8 MPa·m1/2,and that of short transverse direction all reaches 36 MPa·m1/2 and above,with a maximum relative error of only 3.6%.The results indicate that the isothermal forging leads to better performance as well as higher uniformity in mechanical properties.展开更多
The effects of Ca and Sr addition on the microstructure and creep properties of Mg-4Al-2Sn alloys were examined. Tensile tests at 25 ℃ and 200 ℃ and creep tests at 150 ℃ and 200 ℃ were carried out to estimate the ...The effects of Ca and Sr addition on the microstructure and creep properties of Mg-4Al-2Sn alloys were examined. Tensile tests at 25 ℃ and 200 ℃ and creep tests at 150 ℃ and 200 ℃ were carried out to estimate the room temperature and high temperature mechanical properties of these alloys. The microstrueture of the Mg-4Al-2Sn alloy showed dendritic a-Mg, Mg17Al12 and Mg2Sn phases. The latter two phases precipitated along the grain boundaries. The addition of Ca and Sr resulted in the formation of ternary CaMgSn and SrMgSn phases within the grain. The grain size was reduced slightly with the addition of Sr and Ca. The tensile strength was decreased by the addition of Ca and Sr at room temperature. However, the high temperature tensile strength was increased. The creep strength was improved by the addition of Ca and Sr.展开更多
The mechanical properties and microstructural evolution of zircaloy-4 subjected to cumulative strains of 1.48,2.96,4.44 and 5.91 through multiaxial forging(MAF) at cryogenic temperature(77 K) were investigated.The...The mechanical properties and microstructural evolution of zircaloy-4 subjected to cumulative strains of 1.48,2.96,4.44 and 5.91 through multiaxial forging(MAF) at cryogenic temperature(77 K) were investigated.The mechanical properties of the MAF treated alloy were measured through universal tensile testing and Vickers hardness testing equipment.The zircaloy-4 deformed up to a cumulative strain of 5.91 showed improvement in both ultimate tensile strength and hardness from 474 MPa to 717 MPa and from HV 190 to HV 238,respectively,as compared with the as-received alloy.However,there was a noticeable decrement in ductility(from 18%to 3.5%) due to the low strain hardening ability of deformed zircaloy-4.The improvement in strength and hardness of the deformed alloy is attributed to the grain size effect and higher dislocation density generated during multiaxial forging.The microstructural evolutions of deformed samples were characterized by optical microscopy and transmission electron microscopy(TEM).The evolved microstructure at a cumulative strain of 5.91 obtained after MAF up to 12 cycles depicted the formation of ultrafine grains with an average size of 150-250 nm.展开更多
The application of cutting fluid is significantly increased in the machining sector to improve productivity.However,the inherent characteristics of cutting fluids on ecology,environment,and society shift the interest ...The application of cutting fluid is significantly increased in the machining sector to improve productivity.However,the inherent characteristics of cutting fluids on ecology,environment,and society shift the interest of researchers to work on environmentally friendly cooling conditions such as cryogenic cooling.Here,the effect of cutting speed and feed rate on the machining performance of the AISI‑L6 tool steel is investigated under cryogenic cooling conditions.Then,the L9 Taguchi based grey relational analysis(GRA)is conducted to investigate the essential machining indices such as cutting energy,surface roughness,tool wear,and material removal rate(MRR).The results indicate that the cutting speed of 160 m/min and feed rate of 0.16 mm/r are the optimum parameters that significantly improves the machining performance of AISI‑L6 tool steel.展开更多
This study explores the measures to achieve the global 1.5 ℃ temperature rise target (1.5 ℃ target) by analyzing the feasibility and obstacles of nuclear power in China. The 1.5 ℃target imposes stricter requireme...This study explores the measures to achieve the global 1.5 ℃ temperature rise target (1.5 ℃ target) by analyzing the feasibility and obstacles of nuclear power in China. The 1.5 ℃target imposes stricter requirements on China's nuclear power. Considering the available nuclear power plant sites, nuclear power layout, equipment manufacture & supply, nuclear power plant construction capacity, supportive operation & management talents, investment, cost effectiveness, and public acceptance, the achievement of the development objectives of nuclear power in China considering the 1.5 ℃ Target is difficult. However, it is possible if favorable decisions and policies are made.展开更多
In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-direc...In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.展开更多
The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was crea...The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was created by adding 3 wt.%nickel powder during stir casting and homogenization treatment at 500℃ for 24 h after casting.The microstructural results obtained using optical and scanning electron microscope indicate that,after non-isothermal aging treatment,the S-Al_(2)CuMg precipitates become finer,forming a poor zone of this precipitate in the area between the dendrites.Also,adding nickel during stir casting reduces the precipitation rate and the contribution of S-Al_(2)CuMg precipitates in strengthening composite during non-isothermal aging.The maximum hardness,ultimate tensile strength,and toughness achieved in the 3 wt.%nickel-containing sample after non-isothermal aging at 250℃ are(121.30±4.21)HV,(221.67±8.31)MPa,and(1.67±0.08)MJ/m^(3),respectively.The maximum hardness and ultimate tensile strength of AA2024−Al_(3)NiCu composite are decreased by 6%and 4%,respectively,compared to those of nickel-free AA2024 aluminum alloy.展开更多
A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The ...A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.展开更多
A new instrument for upper ocean survey, namely the UCTD (Underway Conductivity-Temperature- Depth), which combines some of the advantages of other underway instruments, is introduced in this paper. The Introduction...A new instrument for upper ocean survey, namely the UCTD (Underway Conductivity-Temperature- Depth), which combines some of the advantages of other underway instruments, is introduced in this paper. The Introduction section presents a description of the construction and function of the UCTD, and the experiments conducted in the South China Sea on board the R/V Dong Fang Hong 2 in July 2007 and August 2008. The UCTD system, with pressure and temperature sensors in the probe, is con- veniently portable, cost-effective and environment-friendly. It is hopefully suitable for future cruises. An intercomparison based on regressing with the experiment temperature data from both SeaBird plus911 CTD and the UCTD showed that the standard deviation is 0.88~C and the correlation coefficient is 0.96, achieving the goals set for the current oceanography uses. In the hydrodynamic experiments, the descending velocities and depths were calculated for different ship speeds. A pulling test was designed with a tensiorneter to measure the magnitude of the pull. The maximal tension of the line was found to be 66.2 kg, which is far lower than the bearing limit of the Hollow Spectra line. Finally, some improvement suggestions are put forward for future experiments and production.展开更多
Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes tha...Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes that occurred overseas since May of 2003 by combining the image data from the National Center for Environmental Prediction of America(NCEP)with the additive tectonic stress from astro-tidal-triggering (ATSA) and makes the following conclusions: The abnormal temperature image data of NCEP can better reflect the spatial-temporal evolution process of tectonic earthquake activity; The ATSA has an evident triggering effect on the activity of a fault when the terra stress is in critical status; using the NCEP images and the ATSA to forecast short-impending earthquake is a new concept; The three earthquakes occurred during the same phase of the respective ATSA cycle, i.e. that occurred at the time when the ATSA reached the relatively steady end of a peak, rather than at the time when the variation rate was maximal. In addition, the author discovered that the occurrence time of other earthquake cases during 2003~2004 in Tibet was also in the same phase of the above-mentioned cycles, and therefore, further study of this feature is needed with more earthquake cases in other areas over longer periods of time.展开更多
The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirement...The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirements on global emission reduction. Nationally Determined Con- tributions of all Parties are far from the 1.5 ℃ target, and conventional emission reduction technologies and policies will also have difficulty in fulfilling this task. In this context, geoengineering is gaining interest in the international arena. The Paris Agreement includes afforestation, carbon capture, utilization and storage, and negative emission technologies such as bio-energy with carbon capture and store. All of these techniques are CO2 removal technologies that belong to geoengineering. Solar radiation management, which is highly controversial, has also attracted increased attention in recent years. Although the outline of the IPCC Special Report on 1.5 ℃ does not include a specific section on geoengineering issues yet, geoengineering is an unconventional technical option that cannot be avoided in research and discussions on impact assessment, technical options, ethics, and international governance under the 1.5 ℃ target. On the basis of analyzing and discussing abovementioned issues, this paper proposes several policy suggestions for China to strengthen research on and response to geoengineering.展开更多
基金Projects(51205319,51101119)supported by the National Natural Science Foundation of China
文摘Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which was strengthened by fine secondary α platelets forming during aging, exists in all the samples; while primary equiaxed α phase, bent lamellar α phase and α plates are simultaneously or individually present in one sample. The strength of alloy increases proportionally with increasing the content of residual β matrix, which is the result of increasing α/β interphase boundary. The plasticity of alloy has a downward trend as the content of residual β matrix increases. This attributes to the increase of fine secondary α platelets, which are cut by dislocations during the deformation. Additionally, coarse α plates with long axis parallel to the maximum resolved shear stress(MRSS) also reduce the plasticity of TC21 alloy.
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2008AA03A233) supported by the National High-Tech Research and Development Program of China
文摘Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile properties were investigated. The results show that the TiAl ingot exhibits good heat workability during containerless near-isothermally forging process, and there are not evident cracks on the surface of as-forged TiAl pancake with a total deformation degree of 60%. The microstructure of the TiAl ingot appears to be typical nearly-lamellar(NL), comprising a great amount of lamellar colonies (α2+γ) and a few equiaxed γ grains. After near-isothermally forging, the as-forged pancake shows primarily fine equiaxed γ grains with an average grain size of 20 μm and some broken lamellar pieces, and some bent lamellas still exist in the hard-deformation zone. Tensile tests at room temperature show that ultimate tensile strength increases from 433 MPa to 573 MPa after forging due to grain refinement effect.
基金Project(51174244) supported by the National Natural Science Foundation of ChinaProject(CDJZR11130005) supported by the Fundamental Research Funds for the Central Universities,China
文摘An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations.
基金Project(2013CB632203)supported by the National Basic Research and Development Program of ChinaProject(2014028027)supported by the Liaoning Provincial Natural Science Foundation,China
文摘Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.
基金Project(2010CB731701) supported by the National Basic Research Program of ChinaProject(2012ZX04010-081) supported by National Science and Technology Major Program of China
文摘Large complex 7A85 aluminum wing-body joint was forged employing isothermal forging process and its mechanical properties were studied.The tensile strength after forging is up to 587.5 MPa in longitudinal direction,15% higher than that using free forging.Moreover,the tensile strength of the forging is almost the same in three directions.Isothermal forging also performs well on overall fracture toughness,with a maximum value of 39.8 MPa·m1/2,and that of short transverse direction all reaches 36 MPa·m1/2 and above,with a maximum relative error of only 3.6%.The results indicate that the isothermal forging leads to better performance as well as higher uniformity in mechanical properties.
基金supported by a grant from the Metals Bank by the Ministry of Knowledge Economy and a grant-in-aid for the National Core Research Center Program (No.R15-2006-022-02001-0)
文摘The effects of Ca and Sr addition on the microstructure and creep properties of Mg-4Al-2Sn alloys were examined. Tensile tests at 25 ℃ and 200 ℃ and creep tests at 150 ℃ and 200 ℃ were carried out to estimate the room temperature and high temperature mechanical properties of these alloys. The microstrueture of the Mg-4Al-2Sn alloy showed dendritic a-Mg, Mg17Al12 and Mg2Sn phases. The latter two phases precipitated along the grain boundaries. The addition of Ca and Sr resulted in the formation of ternary CaMgSn and SrMgSn phases within the grain. The grain size was reduced slightly with the addition of Sr and Ca. The tensile strength was decreased by the addition of Ca and Sr at room temperature. However, the high temperature tensile strength was increased. The creep strength was improved by the addition of Ca and Sr.
基金BRNS,Bombay for their financial grant to this work through grant No.BRN-577-MMD
文摘The mechanical properties and microstructural evolution of zircaloy-4 subjected to cumulative strains of 1.48,2.96,4.44 and 5.91 through multiaxial forging(MAF) at cryogenic temperature(77 K) were investigated.The mechanical properties of the MAF treated alloy were measured through universal tensile testing and Vickers hardness testing equipment.The zircaloy-4 deformed up to a cumulative strain of 5.91 showed improvement in both ultimate tensile strength and hardness from 474 MPa to 717 MPa and from HV 190 to HV 238,respectively,as compared with the as-received alloy.However,there was a noticeable decrement in ductility(from 18%to 3.5%) due to the low strain hardening ability of deformed zircaloy-4.The improvement in strength and hardness of the deformed alloy is attributed to the grain size effect and higher dislocation density generated during multiaxial forging.The microstructural evolutions of deformed samples were characterized by optical microscopy and transmission electron microscopy(TEM).The evolved microstructure at a cumulative strain of 5.91 obtained after MAF up to 12 cycles depicted the formation of ultrafine grains with an average size of 150-250 nm.
基金the National Natural Science Foundation of China(No.51922066)the Natural Science Outstanding Youth Fund of Shandong Province(No.ZR2019JQ19)+1 种基金the National Key Research and Development Program(No.2018YFB2002201)the Key Laboratory of High‑Efficiency and Clean Mechanical Manufacture at Shandong University,Ministry of Education。
文摘The application of cutting fluid is significantly increased in the machining sector to improve productivity.However,the inherent characteristics of cutting fluids on ecology,environment,and society shift the interest of researchers to work on environmentally friendly cooling conditions such as cryogenic cooling.Here,the effect of cutting speed and feed rate on the machining performance of the AISI‑L6 tool steel is investigated under cryogenic cooling conditions.Then,the L9 Taguchi based grey relational analysis(GRA)is conducted to investigate the essential machining indices such as cutting energy,surface roughness,tool wear,and material removal rate(MRR).The results indicate that the cutting speed of 160 m/min and feed rate of 0.16 mm/r are the optimum parameters that significantly improves the machining performance of AISI‑L6 tool steel.
文摘This study explores the measures to achieve the global 1.5 ℃ temperature rise target (1.5 ℃ target) by analyzing the feasibility and obstacles of nuclear power in China. The 1.5 ℃target imposes stricter requirements on China's nuclear power. Considering the available nuclear power plant sites, nuclear power layout, equipment manufacture & supply, nuclear power plant construction capacity, supportive operation & management talents, investment, cost effectiveness, and public acceptance, the achievement of the development objectives of nuclear power in China considering the 1.5 ℃ Target is difficult. However, it is possible if favorable decisions and policies are made.
基金the research board of Sharif University of Technology, Iran, for the financial support and provision of the research facilities used for this work
文摘In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.
文摘The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was created by adding 3 wt.%nickel powder during stir casting and homogenization treatment at 500℃ for 24 h after casting.The microstructural results obtained using optical and scanning electron microscope indicate that,after non-isothermal aging treatment,the S-Al_(2)CuMg precipitates become finer,forming a poor zone of this precipitate in the area between the dendrites.Also,adding nickel during stir casting reduces the precipitation rate and the contribution of S-Al_(2)CuMg precipitates in strengthening composite during non-isothermal aging.The maximum hardness,ultimate tensile strength,and toughness achieved in the 3 wt.%nickel-containing sample after non-isothermal aging at 250℃ are(121.30±4.21)HV,(221.67±8.31)MPa,and(1.67±0.08)MJ/m^(3),respectively.The maximum hardness and ultimate tensile strength of AA2024−Al_(3)NiCu composite are decreased by 6%and 4%,respectively,compared to those of nickel-free AA2024 aluminum alloy.
文摘A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.
基金support of the National High Technology Research and Development Program of China (Nos.2006AA09A314 and 2006AA09A307)the National Natural Science Fund (40706006)+2 种基金China’s Na-tional Basic Research Priorities Programmer (2005CB- 422303 and 2007CB411804)the key project of the In-ternational Science and Technology Cooperation Program of China (2006DFB21250)the Ministry of Educa-tion’s 111 Project (B07036)
文摘A new instrument for upper ocean survey, namely the UCTD (Underway Conductivity-Temperature- Depth), which combines some of the advantages of other underway instruments, is introduced in this paper. The Introduction section presents a description of the construction and function of the UCTD, and the experiments conducted in the South China Sea on board the R/V Dong Fang Hong 2 in July 2007 and August 2008. The UCTD system, with pressure and temperature sensors in the probe, is con- veniently portable, cost-effective and environment-friendly. It is hopefully suitable for future cruises. An intercomparison based on regressing with the experiment temperature data from both SeaBird plus911 CTD and the UCTD showed that the standard deviation is 0.88~C and the correlation coefficient is 0.96, achieving the goals set for the current oceanography uses. In the hydrodynamic experiments, the descending velocities and depths were calculated for different ship speeds. A pulling test was designed with a tensiorneter to measure the magnitude of the pull. The maximal tension of the line was found to be 66.2 kg, which is far lower than the bearing limit of the Hollow Spectra line. Finally, some improvement suggestions are put forward for future experiments and production.
基金the National Natural Science Fund of China (40172101)
文摘Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes that occurred overseas since May of 2003 by combining the image data from the National Center for Environmental Prediction of America(NCEP)with the additive tectonic stress from astro-tidal-triggering (ATSA) and makes the following conclusions: The abnormal temperature image data of NCEP can better reflect the spatial-temporal evolution process of tectonic earthquake activity; The ATSA has an evident triggering effect on the activity of a fault when the terra stress is in critical status; using the NCEP images and the ATSA to forecast short-impending earthquake is a new concept; The three earthquakes occurred during the same phase of the respective ATSA cycle, i.e. that occurred at the time when the ATSA reached the relatively steady end of a peak, rather than at the time when the variation rate was maximal. In addition, the author discovered that the occurrence time of other earthquake cases during 2003~2004 in Tibet was also in the same phase of the above-mentioned cycles, and therefore, further study of this feature is needed with more earthquake cases in other areas over longer periods of time.
文摘The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirements on global emission reduction. Nationally Determined Con- tributions of all Parties are far from the 1.5 ℃ target, and conventional emission reduction technologies and policies will also have difficulty in fulfilling this task. In this context, geoengineering is gaining interest in the international arena. The Paris Agreement includes afforestation, carbon capture, utilization and storage, and negative emission technologies such as bio-energy with carbon capture and store. All of these techniques are CO2 removal technologies that belong to geoengineering. Solar radiation management, which is highly controversial, has also attracted increased attention in recent years. Although the outline of the IPCC Special Report on 1.5 ℃ does not include a specific section on geoengineering issues yet, geoengineering is an unconventional technical option that cannot be avoided in research and discussions on impact assessment, technical options, ethics, and international governance under the 1.5 ℃ target. On the basis of analyzing and discussing abovementioned issues, this paper proposes several policy suggestions for China to strengthen research on and response to geoengineering.