Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analy...Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analysis between MXD chronologies and instrumental records from Shihezi meteorological station showed that each chronology was significantly and positively correlated with the maximum monthly average temperature in July-August, and especially, the regional chronology (RC) was the most highly correlated variable (r=0.54, P〈0.001). Afterwards, the maximum average temperature in July-August was reconstructed using RC. Comparison among reconstructed temperature, observed values, and the drought index (Is) confirmed that precipitation would affect MXD when the absolute value of Is is greater than 1.5σ (|Is| 〉 2.5 during 1953-2008) or near to 1.5a over a 2-3 year period. The response characteristics are related to the semiarid climate of the study area. In dry years, lack of precipitation would limit the thickening of latewood cell walls and, as a result, impact MXD. Therefore, compared with relatively humid regions, the response of tree-ring MXD to air temperature similarly would be influenced by extreme moisture conditions in semiarid areas, and MXD, as a temperature proxy, should be used prudently on a limited scale.展开更多
[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflo...[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.展开更多
[ Objective] To study the characteristics of florescence and pollen in Lagerstroemia speciosa. [ Method ] The process of flower opening and pollen tube germination of Lagerstroemia speciosa was observed and the pollen...[ Objective] To study the characteristics of florescence and pollen in Lagerstroemia speciosa. [ Method ] The process of flower opening and pollen tube germination of Lagerstroemia speciosa was observed and the pollen viability was determined through in vitro germination. [ Result] Sepals of L. speciosa started to diverge at 4:30 am, at 7: 00 am petals flatten up, anther diverged, and the stigma secreted a large number of mucus, it was the best time for artificial pollination. Boric acid and sucrose had a great effect on in vitro pollen germination of L. speciosa, the combination which made highest rate of pollen germination, was sucrose 150 g/L + boric acid 20 mg/L + CaCI2 10 mg/L. Through the fluorescence microscope, it was known that four hours after flowering, a lot of pollen grains germinated on the stigma, six hours after flowering, lots of pollen tubes entered the style and reached to 1/4 length of the style, 12 hours after flowering, pollen tubes concentrated into a beam forward, and reached to 1/2 length of the style, 24 hours after flowering, lots of pollen tubes entered the ovary in a beam and then fertilized and produced seeds. [ Conclusion] The results provide some basis for utilizing L. speciosa to breed.展开更多
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc...Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).展开更多
Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tari...Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.展开更多
It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and la...It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and lag correlations of summertime precipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum- mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRVR correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show similar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is critically useful for our understanding and predicting the climate variabilities in different parts of China. Both NC and CHRV summer R are connected with E1 Nifio events, showing a ‘- -'pattern in an E1 Nifio year and a‘+ +' pattern in the subsequent year. Key words summer precipitation; eastern China; global sea surface展开更多
In this paper, an unusual rainfall in Beijing that occurred on 4 September(‘9.4') 2015 is studied to clarify the reasons for such a strong rainfall in autumn. It was indicated that various factors, including stat...In this paper, an unusual rainfall in Beijing that occurred on 4 September(‘9.4') 2015 is studied to clarify the reasons for such a strong rainfall in autumn. It was indicated that various factors, including stationary westerlies disturbance(i.e. low in the west and high in the east), forward-titling trough,warm shear line, unstable stratification and convective available potential energy release, low level jet as well as a series of mesoscale convective systems produced the strong rainfall. Ordinarily, this situation is uncommon in autumn.展开更多
Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and c...Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.展开更多
The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study are...The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study area. Results show that the annual mean surface air temperature in North China increased at the rate of 0.36℃ per decade, higher than the national average in the same period. Increasing was particularly significant since the mid-1980s, with maximum increase in the middle and northeastern parts of Inner Mongolia. Increasing rate of the annual mean minimum temperature is much higher than that of the maximum temperature, which results in the decrease of the annual mean diurnal temperature range. Noticeable decrease is also observed in the frequency of cold wave. Annual precipitation shows a slight decreasing trend, with more pronounced decrease in southern Shanxi and eastern Hebei provinces, which is mainly represented as decreasing in contribution rates of rainstorm and heavy storm in flood-season (May to September). During 1961 -2010, North China is characterized by a noticeable reduction in annual extreme precipitation, and an increase in high-temperature days over most parts, as well as more frequent droughts. There are remarkable reductions in annual sunshine duration and mean wind speed, associated with the most significant reduction of mean wind speed in midwestern and eastern parts of Inner Mongolia. Meanwhile, North China has experienced a noticeable decrease/increase in annual mean sanddust/haze days during the study period. However, there is no significant trend in fog days, except a pronounced decrease since the 1990s.展开更多
The GMS-5 infrared cloud imagery for two yearly first raining seasons in 1998 and 1999 are used to study the relationship between brightness temperature and surface rain rates. The result shows that it is likely to ha...The GMS-5 infrared cloud imagery for two yearly first raining seasons in 1998 and 1999 are used to study the relationship between brightness temperature and surface rain rates. The result shows that it is likely to have large probability of heavy precipitation with the decrease of brightness temperature and the gradual increase of rainfall intensity; for areas of low temperature, the brightness temperature is better determined for atmosphere above rain gauge stations with multiple points sampling than with single point one; for the yearly first raining season, the threshold brightness temperature is set at 4.6℃ for indication of heavy precipitation in the Fujian area.展开更多
Diurnal temperature range (DTR) is an im- portant measure in studies of climate change and variability. The changes of DTR in different regions are affected by many different factors. In this study, the degree of co...Diurnal temperature range (DTR) is an im- portant measure in studies of climate change and variability. The changes of DTR in different regions are affected by many different factors. In this study, the degree of correlation between the DTR and atmospheric precipitable water (PW) over China is explored using newly homogenized surface weather and sounding observations. The results show that PW changes broadly reflect the geographic patterns of DTR long-term trends over most of China during the period 1970-2012, with significant anticorrelations of trend patterns between the DTR and PW, especially over those regions with higher magnitude DTR trends. PW can largely explain about 40% or more (re 0.40) of the DTR changes, with a d(PW)/d(DTR) slope of -2% to -10% K^-1 over most of northwestern and southeastern China, despite certain seasonal dependencies. For China as whole, the significant anticorrelations between the DTR and PW anomalies range from -0.42 to -0.75, with a d(PW)/d(DTR) slope of-6% to -11% K^-1. This implies that long-term DTR changes are likely to be associated with opposite PW changes, approximately following the Clausius-Clapeyron equation. Furthermore, the relationship is more significant in the warm season than in the cold season. Thus, it is possible that PW can be considered as one potential factor when exploring long-term DTR changes over China. It should be noted that the present study has a largely statistical focus and that the underlying physical processes should therefore be examined in future work.展开更多
The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea ...The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea Surface Temperature (SST) data, the reanalysis data of monthly grid wind field at 925 hPa with a resolution of 2.5° latitude and longitude from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the monthly mean rainfall data from 160 observational stations in China. The results show that there is a strong correlation between the EIWP variability and the spring precipitation in China. The area, volume and intensity indices of the EIWP are negatively correlated with the spring precipitation in southwestern China, while they are positively correlated with the spring precipitation in the rest of China, especially in the northeast. For this correlation between the EIWP variability and the spring precipitation in China, it is found that the correlative relationship is mainly connected with the variations of the moisture transport by the warm air flow, which is under the influence of the EIWP variability, into the inland of China in spring. Two causative factors may influence this transport. One is the variation of the moisture transport carried by the warm air flow from the Arabian Sea influenced by the EIWP variability. The other is the variation of the equator-crossing flow (70°-90°E) influenced by the EIWP anomaly in the previous winter which exerts its effect on the moist warm air transported from the Southern Hemisphere. The position and intensity of the Western North Pacific Subtropical High (WNPSH)variability caused by EIWP variation also influence the spring precipitation in China.展开更多
Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4...Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4 ℃, and further compares the differences between 1.5 ℃ and 2 ℃ targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 ℃, 3.0 ℃, 4.6 ℃, and 6.0 ℃ at warming targets of 1.5 ℃, 2 ℃, 3 ℃, and 4 ℃, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 ℃ target, compared with the climate under the 2 ℃ target, the mean temperature will be lower by 0.5-1 ℃ over Asia; the mean precipitation will be less by 5%-20% over most of Asia, but will be greater by about 10%-15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 ℃ and 2 ℃ warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation), extremely hot weather (anomalies greater than 3or), and extremely heavy precipitation (anomalies greater than 3σ) occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861-1900).展开更多
In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the fea...In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the features of basic climate index and extreme climate events. The results showed that the annual mean temperature and seasonal mean temperature rose significantly, and the rising rate of the annual mean temperature is 0.27℃ per decade; the extreme high temperature days have increased; the interdecadal change of annual precipitation is marked, and the precipitation in winter and summer increased slightly, while decreased slightly in spring and autumn. The annual precipitation increased in the area west of the Yellow River, whereas decreased in the area east of the river. The drought had an increasing trend. There were 17 droughts during 1961-2010, and 10 droughts from 1991 to 2010. The number of droughts in spring and autumn increased, while decreased in summer.展开更多
Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall...Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.展开更多
Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal va...Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.展开更多
The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological...The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological stations uniformly distributed across Southwest China, which includes Yunnan, Guizhou, Chongqing, Sichuan and Tibet. It was found that temperatures in most of the region were warming and this was especially evident for areas at high elevation. The warming was mostly attributable to the increase in annual mean minimum temperature. The characteristics of high temperature/heat waves are increase in frequency, prolonged duration, and weakened intensity. Annual precipitation showed a weak decreasing trend and drier in the east and more rainfall in the west. The precipitation amount in flood season was declining markedly in the whole region; rainfall from extreme heavy precipitation did not change much, and the portion of annual precipitation contributed by extreme heavy precipitation had an increasing trend; annual non-rainy days and the longest consecutive non-rainy days were both increasing; the extreme drought had a decreasing trend since the 1990s; the autumn-rain days displayed a downward fluctuation with apparent periodicity and intermittency. The number of southwestern vortices was decreasing whereas the number of moving vortices increased.展开更多
The world is facing a big challenge of climatic change, mainly due to increasing concentrations of GHGs (greenhouse gases) in the atmosphere. Many researches indicated that the climate change occurred disproportiona...The world is facing a big challenge of climatic change, mainly due to increasing concentrations of GHGs (greenhouse gases) in the atmosphere. Many researches indicated that the climate change occurred disproportionately on developing countries such as MENA (Middle East and North Africa) countries. The climatic model CGCM3.1 (T47) 2 is used in this research to explain the changes in average temperatures and the rainfall on the MENA region with special emphases on Iraq. Historical records (1900-2009) and future (2020-2099) were studied and compared; each period was divided to four sub-periods of thirty years. The results showed that the average monthly temperature for the four historical periods fluctuated between the lowest and highest value as follows: 9.2-32.9, 10.3-32.7, 9.3-32.8 and 8.6-33.9 (℃). The rainfall for historical periods kept on the same distribution during the past 109 years, and fluctuated between the lowest and highest value of 21.3 mm and 37.6 mm with an average that reached up to 26.51 mm. For the future period, the maximum average monthly temperature reached up to 37.41 (℃) during June and minimum average monthly temperature reached up to 4.24 (℃) during January. The average monthly temperature fluctuated giving a clear impression that the future portends a higher temperature. The average monthly rainfall, for the future period, fluctuated between the lowest and highest value of 12.91 mm and 20.63 mm with an average that reached 16.84 mm which represent a reduction percentage of about 36.47% relative to the historical record of rainfall for the sanae months.展开更多
Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyze...Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature (Tmax) and daily minimum temperature (Tmin) are greater than the 90th percentile and less than thel0th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in westem and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the 5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days (CDD) show an increasing trend in southem China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days (CWD) displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.展开更多
基金Supported by Natural Science Foundation of China(41275120,41271120,41301041)Strategic Science and Technology Planning Project of Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences(2012ZD001)~~
文摘Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analysis between MXD chronologies and instrumental records from Shihezi meteorological station showed that each chronology was significantly and positively correlated with the maximum monthly average temperature in July-August, and especially, the regional chronology (RC) was the most highly correlated variable (r=0.54, P〈0.001). Afterwards, the maximum average temperature in July-August was reconstructed using RC. Comparison among reconstructed temperature, observed values, and the drought index (Is) confirmed that precipitation would affect MXD when the absolute value of Is is greater than 1.5σ (|Is| 〉 2.5 during 1953-2008) or near to 1.5a over a 2-3 year period. The response characteristics are related to the semiarid climate of the study area. In dry years, lack of precipitation would limit the thickening of latewood cell walls and, as a result, impact MXD. Therefore, compared with relatively humid regions, the response of tree-ring MXD to air temperature similarly would be influenced by extreme moisture conditions in semiarid areas, and MXD, as a temperature proxy, should be used prudently on a limited scale.
基金Supported by the National Natural Science Foundation of China(30660036 )the Natural Science Foundation of Guangxi Province(0728096) Project of Graduate Student Education Innovation ofGuangxi (2008106020907M266)~~
文摘[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.
基金Supported by the National Key Technology R&D Program in EleventhFive-Year Plan of China(2006BAD01A18)the Program fromMinistry of Environmental Protection of China(Species09-2-3-1)~~
文摘[ Objective] To study the characteristics of florescence and pollen in Lagerstroemia speciosa. [ Method ] The process of flower opening and pollen tube germination of Lagerstroemia speciosa was observed and the pollen viability was determined through in vitro germination. [ Result] Sepals of L. speciosa started to diverge at 4:30 am, at 7: 00 am petals flatten up, anther diverged, and the stigma secreted a large number of mucus, it was the best time for artificial pollination. Boric acid and sucrose had a great effect on in vitro pollen germination of L. speciosa, the combination which made highest rate of pollen germination, was sucrose 150 g/L + boric acid 20 mg/L + CaCI2 10 mg/L. Through the fluorescence microscope, it was known that four hours after flowering, a lot of pollen grains germinated on the stigma, six hours after flowering, lots of pollen tubes entered the style and reached to 1/4 length of the style, 12 hours after flowering, pollen tubes concentrated into a beam forward, and reached to 1/2 length of the style, 24 hours after flowering, lots of pollen tubes entered the ovary in a beam and then fertilized and produced seeds. [ Conclusion] The results provide some basis for utilizing L. speciosa to breed.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41375104)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).
基金Under the auspices of the Second-stage Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-XB2-03,KZCX2-YW-127)National Natural Science Foundation of China (No 40671014)Shanghai Academic Discipline Project (Human Geography) (No B410)
文摘Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.
基金supported by the project ‘the Weather Cause of Formation for Blizzard Hazard in South China’ from the Ministry of ScienceTechnology National Technological Support Project (2008BAC48B02).
文摘It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and lag correlations of summertime precipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum- mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRVR correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show similar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is critically useful for our understanding and predicting the climate variabilities in different parts of China. Both NC and CHRV summer R are connected with E1 Nifio events, showing a ‘- -'pattern in an E1 Nifio year and a‘+ +' pattern in the subsequent year. Key words summer precipitation; eastern China; global sea surface
基金supported by the National Key Basic Research Program of China[grant number 2012CB417201]the National Natural Science Foundation of China[grant number 41375053]
文摘In this paper, an unusual rainfall in Beijing that occurred on 4 September(‘9.4') 2015 is studied to clarify the reasons for such a strong rainfall in autumn. It was indicated that various factors, including stationary westerlies disturbance(i.e. low in the west and high in the east), forward-titling trough,warm shear line, unstable stratification and convective available potential energy release, low level jet as well as a series of mesoscale convective systems produced the strong rainfall. Ordinarily, this situation is uncommon in autumn.
基金supported by National Natural Science Foundation of China (Grant Nos.91025015,51178209)
文摘Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.
基金supported by the Climate Change Special Foundation of China Meteorological Administration(No. CCSF2010-1)
文摘The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study area. Results show that the annual mean surface air temperature in North China increased at the rate of 0.36℃ per decade, higher than the national average in the same period. Increasing was particularly significant since the mid-1980s, with maximum increase in the middle and northeastern parts of Inner Mongolia. Increasing rate of the annual mean minimum temperature is much higher than that of the maximum temperature, which results in the decrease of the annual mean diurnal temperature range. Noticeable decrease is also observed in the frequency of cold wave. Annual precipitation shows a slight decreasing trend, with more pronounced decrease in southern Shanxi and eastern Hebei provinces, which is mainly represented as decreasing in contribution rates of rainstorm and heavy storm in flood-season (May to September). During 1961 -2010, North China is characterized by a noticeable reduction in annual extreme precipitation, and an increase in high-temperature days over most parts, as well as more frequent droughts. There are remarkable reductions in annual sunshine duration and mean wind speed, associated with the most significant reduction of mean wind speed in midwestern and eastern parts of Inner Mongolia. Meanwhile, North China has experienced a noticeable decrease/increase in annual mean sanddust/haze days during the study period. However, there is no significant trend in fog days, except a pronounced decrease since the 1990s.
基金Scientific Research project of Fujian Meteorological Bureau for 1998
文摘The GMS-5 infrared cloud imagery for two yearly first raining seasons in 1998 and 1999 are used to study the relationship between brightness temperature and surface rain rates. The result shows that it is likely to have large probability of heavy precipitation with the decrease of brightness temperature and the gradual increase of rainfall intensity; for areas of low temperature, the brightness temperature is better determined for atmosphere above rain gauge stations with multiple points sampling than with single point one; for the yearly first raining season, the threshold brightness temperature is set at 4.6℃ for indication of heavy precipitation in the Fujian area.
基金funded by the National Basic Research Program of China (Grant No. 2012CB956203)the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05090101)the Climate Change Special Fund of the China Meteorological Administration: Atmospheric Water Vapor Changes in China and Its Causes (Grant No. CCSF201330)
文摘Diurnal temperature range (DTR) is an im- portant measure in studies of climate change and variability. The changes of DTR in different regions are affected by many different factors. In this study, the degree of correlation between the DTR and atmospheric precipitable water (PW) over China is explored using newly homogenized surface weather and sounding observations. The results show that PW changes broadly reflect the geographic patterns of DTR long-term trends over most of China during the period 1970-2012, with significant anticorrelations of trend patterns between the DTR and PW, especially over those regions with higher magnitude DTR trends. PW can largely explain about 40% or more (re 0.40) of the DTR changes, with a d(PW)/d(DTR) slope of -2% to -10% K^-1 over most of northwestern and southeastern China, despite certain seasonal dependencies. For China as whole, the significant anticorrelations between the DTR and PW anomalies range from -0.42 to -0.75, with a d(PW)/d(DTR) slope of-6% to -11% K^-1. This implies that long-term DTR changes are likely to be associated with opposite PW changes, approximately following the Clausius-Clapeyron equation. Furthermore, the relationship is more significant in the warm season than in the cold season. Thus, it is possible that PW can be considered as one potential factor when exploring long-term DTR changes over China. It should be noted that the present study has a largely statistical focus and that the underlying physical processes should therefore be examined in future work.
基金This research is supported Sciences Foundation of China by the National Natural(No.40305009).
文摘The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea Surface Temperature (SST) data, the reanalysis data of monthly grid wind field at 925 hPa with a resolution of 2.5° latitude and longitude from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the monthly mean rainfall data from 160 observational stations in China. The results show that there is a strong correlation between the EIWP variability and the spring precipitation in China. The area, volume and intensity indices of the EIWP are negatively correlated with the spring precipitation in southwestern China, while they are positively correlated with the spring precipitation in the rest of China, especially in the northeast. For this correlation between the EIWP variability and the spring precipitation in China, it is found that the correlative relationship is mainly connected with the variations of the moisture transport by the warm air flow, which is under the influence of the EIWP variability, into the inland of China in spring. Two causative factors may influence this transport. One is the variation of the moisture transport carried by the warm air flow from the Arabian Sea influenced by the EIWP variability. The other is the variation of the equator-crossing flow (70°-90°E) influenced by the EIWP anomaly in the previous winter which exerts its effect on the moist warm air transported from the Southern Hemisphere. The position and intensity of the Western North Pacific Subtropical High (WNPSH)variability caused by EIWP variation also influence the spring precipitation in China.
基金Acknowledgments This research was jointly supported by the National Key Research and Development Program of China (2016YFA0600701), the National Natural Science Foundation of China (41675069), and the Climate Change Specific Fund of China (CCSF201731).
文摘Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4 ℃, and further compares the differences between 1.5 ℃ and 2 ℃ targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 ℃, 3.0 ℃, 4.6 ℃, and 6.0 ℃ at warming targets of 1.5 ℃, 2 ℃, 3 ℃, and 4 ℃, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 ℃ target, compared with the climate under the 2 ℃ target, the mean temperature will be lower by 0.5-1 ℃ over Asia; the mean precipitation will be less by 5%-20% over most of Asia, but will be greater by about 10%-15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 ℃ and 2 ℃ warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation), extremely hot weather (anomalies greater than 3or), and extremely heavy precipitation (anomalies greater than 3σ) occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861-1900).
基金supported by the Special Project on Climate Change in China Meteorological Administation(No. CCSF2010-5)
文摘In this study, observational data from 141 meteorological stations in Northwest China, including temperature, precipitation, dust storm, gale days and wind speed, were analyzed statistically to gain insight of the features of basic climate index and extreme climate events. The results showed that the annual mean temperature and seasonal mean temperature rose significantly, and the rising rate of the annual mean temperature is 0.27℃ per decade; the extreme high temperature days have increased; the interdecadal change of annual precipitation is marked, and the precipitation in winter and summer increased slightly, while decreased slightly in spring and autumn. The annual precipitation increased in the area west of the Yellow River, whereas decreased in the area east of the river. The drought had an increasing trend. There were 17 droughts during 1961-2010, and 10 droughts from 1991 to 2010. The number of droughts in spring and autumn increased, while decreased in summer.
基金National Key Fundamental Project for Research Development and Plan (2004CB418301)Natural Science Foundation of China (40575018, 40675033)
文摘Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.
基金Under the auspices of Nation Basic Research Program of China(No.2007CB411502)German Science Foundation(Research Unit 536)Independent Research Project from State Key Laboratory of Cryospheric Science(No.SKLCS-ZZ-2010-02)
文摘Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.
基金supported by the special climate change in 2010 of the China Meteorological Administration (No. ccfs-2010)the National Natural Science Foundation of China (No. 41275097)
文摘The present study focused on statistical analysis of interannual, interdecadal variations of climate variables and extreme climate events during the period of 1961-2010 using observational data from 376 meteorological stations uniformly distributed across Southwest China, which includes Yunnan, Guizhou, Chongqing, Sichuan and Tibet. It was found that temperatures in most of the region were warming and this was especially evident for areas at high elevation. The warming was mostly attributable to the increase in annual mean minimum temperature. The characteristics of high temperature/heat waves are increase in frequency, prolonged duration, and weakened intensity. Annual precipitation showed a weak decreasing trend and drier in the east and more rainfall in the west. The precipitation amount in flood season was declining markedly in the whole region; rainfall from extreme heavy precipitation did not change much, and the portion of annual precipitation contributed by extreme heavy precipitation had an increasing trend; annual non-rainy days and the longest consecutive non-rainy days were both increasing; the extreme drought had a decreasing trend since the 1990s; the autumn-rain days displayed a downward fluctuation with apparent periodicity and intermittency. The number of southwestern vortices was decreasing whereas the number of moving vortices increased.
文摘The world is facing a big challenge of climatic change, mainly due to increasing concentrations of GHGs (greenhouse gases) in the atmosphere. Many researches indicated that the climate change occurred disproportionately on developing countries such as MENA (Middle East and North Africa) countries. The climatic model CGCM3.1 (T47) 2 is used in this research to explain the changes in average temperatures and the rainfall on the MENA region with special emphases on Iraq. Historical records (1900-2009) and future (2020-2099) were studied and compared; each period was divided to four sub-periods of thirty years. The results showed that the average monthly temperature for the four historical periods fluctuated between the lowest and highest value as follows: 9.2-32.9, 10.3-32.7, 9.3-32.8 and 8.6-33.9 (℃). The rainfall for historical periods kept on the same distribution during the past 109 years, and fluctuated between the lowest and highest value of 21.3 mm and 37.6 mm with an average that reached up to 26.51 mm. For the future period, the maximum average monthly temperature reached up to 37.41 (℃) during June and minimum average monthly temperature reached up to 4.24 (℃) during January. The average monthly temperature fluctuated giving a clear impression that the future portends a higher temperature. The average monthly rainfall, for the future period, fluctuated between the lowest and highest value of 12.91 mm and 20.63 mm with an average that reached 16.84 mm which represent a reduction percentage of about 36.47% relative to the historical record of rainfall for the sanae months.
基金supported by the Department of Science and Technology of China(2009CB421403 and2010CB428403)by the National Natural Science Foundation of China(41275110)
文摘Daily precipitation for 1960-2011 and maximum/minimum temperature extremes for 1960-2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature (Tmax) and daily minimum temperature (Tmin) are greater than the 90th percentile and less than thel0th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in westem and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the 5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days (CDD) show an increasing trend in southem China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days (CWD) displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.