单个裂隙是构成裂隙网络的基础,其中的水流和溶质运移机理目前尚未完全清楚。文章使用平行大理石板构成单裂隙试验模型,研究了水力梯度和流速之间的关系以及溶质运移规律,采用连续时间随机游走(continuous time random walk,CTRW)模拟...单个裂隙是构成裂隙网络的基础,其中的水流和溶质运移机理目前尚未完全清楚。文章使用平行大理石板构成单裂隙试验模型,研究了水力梯度和流速之间的关系以及溶质运移规律,采用连续时间随机游走(continuous time random walk,CTRW)模拟软件包中的截断幂函数(truncation power-law function,TPL)对溶质的穿透曲线进行模拟,并与传统的对流-弥散方程(advection-dispersion equation,ADE)模拟结果进行了对比,探讨了CTRW中参数的变化特征。结果表明:实验条件下的水流呈非达西流,用Forchheimer方程能更好地拟合裂隙中水力梯度和流速的关系;裂隙内的溶质运移为非费克运移,表现出明显的“拖尾”现象;在实验条件下拟合溶质运移的穿透曲线,TPL的拟合结果均明显优于ADE;同一隙宽下,模型参数β随流速的增加而增加,其值分别为0.882、1.045、1.375;同一流速下,β随隙宽的增加而减小,其值分别为1.375、1.263、1.112。展开更多
In this paper, we consider the stationary probability and first-passage time of biased random walk on 1D chain, where at each step the walker moves to the left and right with probabilities p and q respectively(0 p, q ...In this paper, we consider the stationary probability and first-passage time of biased random walk on 1D chain, where at each step the walker moves to the left and right with probabilities p and q respectively(0 p, q 1,p + q = 1). We derive exact analytical results for the stationary probability and first-passage time as a function of p and q for the first time. Our results suggest that the first-passage time shows a double power-law F ^(N-1)~γ, where the exponent γ = 2 for N < |p-q|^(-1) and γ = 1 for N > |p-q|^(-1). Our study sheds useful insights into the biased random-walk process.展开更多
We study the open quantum random walk (OQRW) with time-dependence on the one-dimensional lattice space and obtain the associated limit distribution. As an application we study the return probability of the OQRW. We al...We study the open quantum random walk (OQRW) with time-dependence on the one-dimensional lattice space and obtain the associated limit distribution. As an application we study the return probability of the OQRW. We also ask, "What is the average time for the return probability of the OQRW?"展开更多
文摘单个裂隙是构成裂隙网络的基础,其中的水流和溶质运移机理目前尚未完全清楚。文章使用平行大理石板构成单裂隙试验模型,研究了水力梯度和流速之间的关系以及溶质运移规律,采用连续时间随机游走(continuous time random walk,CTRW)模拟软件包中的截断幂函数(truncation power-law function,TPL)对溶质的穿透曲线进行模拟,并与传统的对流-弥散方程(advection-dispersion equation,ADE)模拟结果进行了对比,探讨了CTRW中参数的变化特征。结果表明:实验条件下的水流呈非达西流,用Forchheimer方程能更好地拟合裂隙中水力梯度和流速的关系;裂隙内的溶质运移为非费克运移,表现出明显的“拖尾”现象;在实验条件下拟合溶质运移的穿透曲线,TPL的拟合结果均明显优于ADE;同一隙宽下,模型参数β随流速的增加而增加,其值分别为0.882、1.045、1.375;同一流速下,β随隙宽的增加而减小,其值分别为1.375、1.263、1.112。
基金Supported by the National Natural Science Foundation of China under Grant No.11205110Shanghai Key Laboratory of Intelligent Information Processing(IIPL-2011-009)Innovative Training Program for College Students under Grant No.2015xj070
文摘In this paper, we consider the stationary probability and first-passage time of biased random walk on 1D chain, where at each step the walker moves to the left and right with probabilities p and q respectively(0 p, q 1,p + q = 1). We derive exact analytical results for the stationary probability and first-passage time as a function of p and q for the first time. Our results suggest that the first-passage time shows a double power-law F ^(N-1)~γ, where the exponent γ = 2 for N < |p-q|^(-1) and γ = 1 for N > |p-q|^(-1). Our study sheds useful insights into the biased random-walk process.
文摘We study the open quantum random walk (OQRW) with time-dependence on the one-dimensional lattice space and obtain the associated limit distribution. As an application we study the return probability of the OQRW. We also ask, "What is the average time for the return probability of the OQRW?"