In a meandering fiver, a certain scale of turbulent vortex dominates the development of fiver morphology, making the river bend with s particular curvature. This kind of vortex is denoted as "bend-forming vortex". T...In a meandering fiver, a certain scale of turbulent vortex dominates the development of fiver morphology, making the river bend with s particular curvature. This kind of vortex is denoted as "bend-forming vortex". The coordinated relationship of bend-forming vortex and meandering fiver channel is then known as "self-adaption feature" of rivers. With these two concepts, this paper investigated the stability and self-adaption character of coherent vortex in the U-shape river bend with a constant curvature. On the basis of fluid mechanics theory and in consideration of turbulent coherent vortex as disturbance, the growth rate and the wave number response range of coherent vortex in meandering rivers with different curvatures were calculated in this paper. Moreover, the responses of different scales of coherent turbulence structure to river bend parameters were analyzed to explain the mechanism of fiver bend maintenance. These methods could provide a theoretical basis for further investigation on fiver meandering.展开更多
Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades...Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades or endwalls to build up a film shielding the material. The holes often are inclined in the downstream direction and give rise to a kidney vortex. This is a counter-rotating vortex pair, with an upward flow direction between the two vortices, which tends to lift off the surface and to locally feed hot air towards the blade outside the pair. Reversing the rotational sense of the vortices reverses these two drawbacks into advantages. In the considered case, an anti-kidney vortex is generated using two subsequent rows of holes both inclined downstream and yawed spanwise with alternating angles. In a previous study, we performed large-eddy simulations (which focused on the fully turbulent boundary layer) of this anti-kidney vortex film-cooling and compared them to a corresponding physical experiment. The present work analyzes the simulated flow field in detail, beginning in the plenum (inside the blade or endwall) through the holes up to the mixture with the hot boundary layer. To identify the vortical structures found in the mean flow and in the instantaneous flow, we mostly use the λ 2 criterion and the line integral convolution (LIC) technique indicating sectional streamlines. The flow regions (coolant plenum, holes, and boundary layer) are studied subsequently and linked to each other. To track the anti-kidney vortex throughout the boundary layer, we propose two criteria which are based on vorticity and on LIC results. This enables us to associate the jet vortices with the cooling effectiveness at the wall, which is the key feature of film cooling.展开更多
基金supported by the National Natural Science Foundation for Innovative Research Groups of China (Grant No.51021004)the National Natural Science Foundation of China (Grant Nos.50979066,50809045)
文摘In a meandering fiver, a certain scale of turbulent vortex dominates the development of fiver morphology, making the river bend with s particular curvature. This kind of vortex is denoted as "bend-forming vortex". The coordinated relationship of bend-forming vortex and meandering fiver channel is then known as "self-adaption feature" of rivers. With these two concepts, this paper investigated the stability and self-adaption character of coherent vortex in the U-shape river bend with a constant curvature. On the basis of fluid mechanics theory and in consideration of turbulent coherent vortex as disturbance, the growth rate and the wave number response range of coherent vortex in meandering rivers with different curvatures were calculated in this paper. Moreover, the responses of different scales of coherent turbulence structure to river bend parameters were analyzed to explain the mechanism of fiver bend maintenance. These methods could provide a theoretical basis for further investigation on fiver meandering.
基金partly funded by Swiss National Science Foundation (SNF) with project number 200020-116310granted by the DEISA Consortium,co-funded throughthe EU FP7 project RI-222919the DEISA Extreme Computing Initiative under the project acronym FCool3
文摘Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades or endwalls to build up a film shielding the material. The holes often are inclined in the downstream direction and give rise to a kidney vortex. This is a counter-rotating vortex pair, with an upward flow direction between the two vortices, which tends to lift off the surface and to locally feed hot air towards the blade outside the pair. Reversing the rotational sense of the vortices reverses these two drawbacks into advantages. In the considered case, an anti-kidney vortex is generated using two subsequent rows of holes both inclined downstream and yawed spanwise with alternating angles. In a previous study, we performed large-eddy simulations (which focused on the fully turbulent boundary layer) of this anti-kidney vortex film-cooling and compared them to a corresponding physical experiment. The present work analyzes the simulated flow field in detail, beginning in the plenum (inside the blade or endwall) through the holes up to the mixture with the hot boundary layer. To identify the vortical structures found in the mean flow and in the instantaneous flow, we mostly use the λ 2 criterion and the line integral convolution (LIC) technique indicating sectional streamlines. The flow regions (coolant plenum, holes, and boundary layer) are studied subsequently and linked to each other. To track the anti-kidney vortex throughout the boundary layer, we propose two criteria which are based on vorticity and on LIC results. This enables us to associate the jet vortices with the cooling effectiveness at the wall, which is the key feature of film cooling.