期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
湍流边界层中马蹄形涡的形成方式 被引量:1
1
作者 李克文 连淇祥 《力学学报》 EI CSCD 北大核心 1992年第2期145-151,共7页
本文使用一种新的流动显示方法——激光片光运动法和几种实验技巧对湍流边界层中的马蹄形涡进行了观测,发现并描述了其形成的四种方式:二次不稳定式、组合式、变形式和突发式。对这四种马蹄形涡的形成及发展进行了研究和比较。实验结果... 本文使用一种新的流动显示方法——激光片光运动法和几种实验技巧对湍流边界层中的马蹄形涡进行了观测,发现并描述了其形成的四种方式:二次不稳定式、组合式、变形式和突发式。对这四种马蹄形涡的形成及发展进行了研究和比较。实验结果表明,这些马蹄形涡在尺度、运动速度和变形上是有差别的。 展开更多
关键词 马蹄形涡 湍流力界层 流动显示
下载PDF
Turbulent boundary layers and hydrodynamic flow analysis of nanofluids over a plate 被引量:4
2
作者 AOUINET Hana DHAHRI Maher +2 位作者 SAFAEI Mohammad Reza SAMMOUDA Habib ANQI Ali E. 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3340-3353,共14页
A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simula... A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s. 展开更多
关键词 turbulent boundary layers nanofluids hydrodynamic flow wall shear stress turbulent intensity
下载PDF
Wind Force Coefficients for Designing Porous Canopy Roofs 被引量:1
3
作者 Yasushi Uematsu Hiromichi Sakurai +1 位作者 Yukari Miyamoto Eri Gavansky 《Journal of Civil Engineering and Architecture》 2013年第9期1047-1055,共9页
Wind force coefficients for designing porous canopy roofs have been investigated based on a series of wind tunnel experiments. Gable, troughed and mono-sloped roofs were tested. The roof models were made of 0.5 mm thi... Wind force coefficients for designing porous canopy roofs have been investigated based on a series of wind tunnel experiments. Gable, troughed and mono-sloped roofs were tested. The roof models were made of 0.5 mm thick perforated duralumin plates, the porosity of which was changed from 0 to about 0.4. Overall aerodynamic forces and moments acting on the roof model were measured in a turbulent boundary layer with a six-component force balance for various wind directions. The results indicate that the wind loads on canopy roofs generally decrease with an increase in porosity of the roof. Assuming that the roof is rigid and supported by the four corner columns with no walls, the axial forces induced in the columns are regarded as the most important load effect for discussing the design wind loads. Two loading patterns causing the maximum tension and compression in the columns are considered. Based on a combination of the lift and moment coefficients, the design wind force coefficients on the windward and leeward halves of the roof are presented for the two loading patterns as a function of the roof pitch and porosity. The effect of porosity is taken into account as a reduction factor of the wind loads. 展开更多
关键词 Canopy roof POROSITY wind force coefficient wind tunnel experiment codification.
下载PDF
Turbulence Model Investigations on the Boundary Layer Flow with Adverse Pressure Gradients 被引量:1
4
作者 Yong Zhao Zhi Zong +1 位作者 Li Zoli Tianlin Wang 《Journal of Marine Science and Application》 CSCD 2015年第2期170-174,共5页
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses si... In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied. 展开更多
关键词 adverse pressure gradient turbulent boundary layer turbulence models local frictional resistance coefficient RANS Reynolds-stress
下载PDF
Drag reduction via turbulent boundary layer flow control 被引量:11
5
作者 ABBAS Adel BUGEDA Gabriel +5 位作者 FERRER Esteban FU Song PERIAUX Jacques PONS-PRATS Jordi VALERO Eusebio ZHENG Yao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第9期1281-1290,共10页
Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding ... Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding of the flow structures of turbulence.Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures.The combination of simulation,understanding and micro-actuation technologies offers new opportunities to significantly decrease drag,and by doing so,to increase fuel efficiency of future aircraft.The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry,even though it is still at a low technology readiness level(TRL).This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies. 展开更多
关键词 turbulent boundary layer flow control drag reduction skin-friction drag reduction
原文传递
Experimental investigation of Reynolds stress complex eddy viscosity model for coherent structure dynamics 被引量:9
6
作者 JIA YongXia TANG ZhanQi JIANG Nan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第7期1319-1327,共9页
Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been fi... Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation. 展开更多
关键词 turbulent boundary layer coherent structure complex eddy viscosity model Reynolds stress phase difference
原文传递
Recent advances in active control of turbulent boundary layers 被引量:3
7
作者 ZHOU Yu BAI HongLei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第7期1289-1295,共7页
In this article,we review the recent progress in active control of a turbulent boundary layer for skin-friction drag reduction.Near-wall coherent structures,which are closely associated with large skin-friction drag a... In this article,we review the recent progress in active control of a turbulent boundary layer for skin-friction drag reduction.Near-wall coherent structures,which are closely associated with large skin-friction drag and are thus often the target to be manipulated,are discussed briefly,providing a rationale of various control strategies.Open-and closed-loop controls are extensively reviewed,largely focusing on techniques and drag-reduction mechanisms.Finally,some concluding remarks are given. 展开更多
关键词 TURBULENCE boundary layer active control
原文传递
Calculation of Turbulent Boundary Layers Using the Dissipation Integral Method
8
作者 Matthias Buschmann (University of Technology Dresden, Institute of Fluid Mechanics, 01062 Dresden, Germany) 《Journal of Thermal Science》 SCIE EI CAS CSCD 1999年第4期223-230,共8页
This paper gives an introduction into the dissipation integral method. The general integral equations for the three-dimensional case are derived. It is found that for a practical calculation algorithm the integral mom... This paper gives an introduction into the dissipation integral method. The general integral equations for the three-dimensional case are derived. It is found that for a practical calculation algorithm the integral momentum equation and the integral energy equation are most useful. Using two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown. Test cases for two- and three-dimensional boundary layers are analysed and discussed. The paper concludes with a discussion of the advantages and limits of dissipation integral methods. 展开更多
关键词 turbulent boundary layer integral method fluid mechanics.
原文传递
β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp
9
作者 YanChao Hu WeiTao Bi +1 位作者 ShiYao Li ZhenSu She 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第12期36-44,共9页
A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundar... A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model. 展开更多
关键词 compression ramp relaxation turbulent boundary layer Reynolds stress β-distribution symmetry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部