期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于湍流动力学模型的油水分离装置 被引量:2
1
作者 韩利 安宇 +6 位作者 吴杨 方济中 张庆霞 潘洁 马锐 钱勇 曾晰 《浙江工业大学学报》 CAS 北大核心 2021年第5期550-557,共8页
目前,各变电站采用在变压器底部建筑蓄油池的方式处理变压器废油,废油混入雨水后形成油水混合物,不仅浪费能源、外泄造成污染,而且还会造成安全隐患。为了解决上述问题,基于新型旋流微泡浮选原理以及湍流动力学,设计一套回流式含油废水... 目前,各变电站采用在变压器底部建筑蓄油池的方式处理变压器废油,废油混入雨水后形成油水混合物,不仅浪费能源、外泄造成污染,而且还会造成安全隐患。为了解决上述问题,基于新型旋流微泡浮选原理以及湍流动力学,设计一套回流式含油废水高效处理装置,在所设计浮选柱旋流器内将油水混合液体进行分离,由于油、水两相间存在密度差,在混合体系中会发生水中油滴、气泡升浮以及油中水滴沉降的现象,油滴在浮选柱气浮段发生重力场中的聚结行为,聚结形成大的油滴更有利于后续分离。油水分离后将过滤液体回流至池中,通过多次循环高效分离,实现变压器油的提取分离收集和积水清洁化。同时从理论、Fluent软件仿真、自动化和结构优化等方面对该设备进行了研究,通过试验加以验证并且得出了一系列最优控制参数,在最优参数下油水分离效率可达90%。 展开更多
关键词 变压器蓄油池 新型水力旋流 湍流动力学 油水分离
下载PDF
精馏塔板上气液相界面积的测量与预测 被引量:7
2
作者 宋海华 王秀丽 李红海 《化工学报》 EI CAS CSCD 北大核心 2003年第8期1112-1117,共6页
利用现代的电子光学测试仪器和计算机图像处理技术较准确地测量了精馏塔板上鼓泡液体中气泡的粒径分布和相界面积 .同时 ,还从理论上分析了湍流液体中气泡变形与破碎的机理 ,提出了预测气液相界面积的多相湍流动力学模型 .模拟计算结果... 利用现代的电子光学测试仪器和计算机图像处理技术较准确地测量了精馏塔板上鼓泡液体中气泡的粒径分布和相界面积 .同时 ,还从理论上分析了湍流液体中气泡变形与破碎的机理 ,提出了预测气液相界面积的多相湍流动力学模型 .模拟计算结果与实验测量数据的比较证明 ,此模型有较高的准确性 ,而且形式简单 。 展开更多
关键词 气泡直径分布 相界面积 多相湍流动力学 计算机图像处理 精馏塔板
下载PDF
利用同步偏振辐射统计测量磁化强度
3
作者 刘棒棒 王如月 《首都师范大学学报(自然科学版)》 2023年第1期17-20,27,共5页
星际磁场在天体物理中具有重要作用,但测量其强度是极其困难的。本文基于同步偏振辐射理论开发了测量磁化强度的新技术,建立了同步偏振辐射强度的标准差和平均值的比值与阿尔文马赫数的幂律关系。此外,该技术也应用于Planck观测数据,实... 星际磁场在天体物理中具有重要作用,但测量其强度是极其困难的。本文基于同步偏振辐射理论开发了测量磁化强度的新技术,建立了同步偏振辐射强度的标准差和平均值的比值与阿尔文马赫数的幂律关系。此外,该技术也应用于Planck观测数据,实现了磁化强度的测量。 展开更多
关键词 磁流体动力学湍流 同步偏振辐射 磁化强度
下载PDF
Kinematic Characteristics and Thermophoretic Deposition of Inhalable Particles in Turbulent Duct Flow 被引量:3
4
作者 杨瑞昌 刘若雷 +1 位作者 周涛 赵磊 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期192-197,共6页
The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with tempera... The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with temperature distribution were experimentally studied. Particle dynamics analyzer (PDA) was used for the on-line measurement of particle motion and particle concentration distribution in the cross-sections of the duct. The influences of the parameters such as the ratio of the bulk air temperature to the cold wall temperature and the air flow rate in the duct on the kinematical characteristics and the deposition efficiencies of PM2.5 were investigated. The experimental re- sults show that the deposition efficiencies of PM2.5 mainly depend on the temperature difference between the air and the cold wail, wffile the air flow rate and the particlecon^centration almost affect hardly tile clep0si-tion-effi ciency. The radial force thermophoresis to push PM2.5 to the cold wail is found the key factor for PM2.5 deposition.Based on the experimental results, an empirical modified Romay correlation for the calculation of thermophoretic deposition efficiency of PM2.5 is presenlext. The empirical correlation agrees reasonably well with the experimental data. 展开更多
关键词 inhalable particles THERMOPHORESIS deposition efficiency
下载PDF
Simulation and analysis of airflow stability during fire in mine belt roadway 被引量:3
5
作者 ZHANG Sheng-zhu CHENG Wei-min +2 位作者 LI Qiu-jin ZHANG Rui LUO Chuan-Iong 《Journal of Coal Science & Engineering(China)》 2010年第4期375-380,共6页
According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mi... According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire. 展开更多
关键词 belt roadway disaster airflow STABILITY numerical simulation
下载PDF
Numerical Simulation on Ship Bubbly Wake 被引量:2
6
作者 傅慧萍 万鹏程 《Journal of Marine Science and Application》 2011年第4期413-418,共6页
Based on a volume of fluid two-phase model imbedded in the general computational fluid dynamics code FLUENT6.3.26, the viscous flow with free surface around a model-scaled KRISO container ship (KCS) was first numeri... Based on a volume of fluid two-phase model imbedded in the general computational fluid dynamics code FLUENT6.3.26, the viscous flow with free surface around a model-scaled KRISO container ship (KCS) was first numerically simulated. Then with a rigid-lid-free-surface method, the underwater flow field was computed based on the mixture muitiphase model to simulate the bubbly wake around the KCS hull. The realizable k-e two-equation turbulence model and Reynolds stress model were used to analyze the effects of turbulence model on the ship bubbly wake. The air entrainment model, which is relative to the normal velocity gradient of the free surface, and the solving method were verified by the qualitatively reasonable computed results. 展开更多
关键词 multiphase flow ship hull bubbly wake numerical simulation
下载PDF
CFD Simulation of Orifice Flow in Orifice-type Liquid Distributor 被引量:2
7
作者 Yu Hongfeng Li Xingang +1 位作者 Sui Hong Li Hong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第3期70-78,共9页
In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in... In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models. 展开更多
关键词 discharge coefficient orifice-type liquid distributors CFD liquid height
下载PDF
Experimental and CFD Studies on the Performance of Microfiltration Enhanced by a Turbulence Promoter 被引量:2
8
作者 刘元法 贺高红 +3 位作者 丁路辉 窦红 鞠佳 李保军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期617-624,共8页
This paper reports experimental and computational fluid dynamics(CFD) studies on the performance of microfiltration enhanced by a helical screw insert.The experimental results show that the use of turbulence pro-moter... This paper reports experimental and computational fluid dynamics(CFD) studies on the performance of microfiltration enhanced by a helical screw insert.The experimental results show that the use of turbulence pro-moter can improve the permeate flux of membrane in the crossflow microfiltration of calcium carbonate suspension,and flux improvement efficiency is strongly influenced by operation conditions.The energy consumption analysis indicates that the enhanced membrane system is more energy saving at higher feed concentrations.To explore the intrinsic mechanism of flux enhancement by a helical screw insert,three-dimensional CFD simulation of fluid flow was implemented.It reveals that hydrodynamic characteristics of fluid flow inside the channel are entirely changed by the turbulence promoter.The rotational flow pattern increases the scouring effect on the tube wall,reducing the particle deposition on the membrane surface.The absence of stagnant regions and high wall shear stress are respon-sible for the enhanced filtration performance.No secondary flow is generated in the channel,owing to the streamline shape of helical screw insert,so that the enhanced performance is achieved at relatively low energy consumption. 展开更多
关键词 membrane fouling flux enhancement turbulence promoter computational fluid dynamics
下载PDF
Comparison of the Reynolds-averaged Turbulence Models on Single Phase Flow Simulation in Agitated Extraction Columns 被引量:4
9
作者 尤学一 H.J.Bart 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第3期362-366,共5页
The flow field of liquid phase (water) of agitated extraction columns is simulated with the help of computational fluid dynamics (CFD). Four kinds of Reynolds-averaged turbulence models, i.e. the standard k-ε model, ... The flow field of liquid phase (water) of agitated extraction columns is simulated with the help of computational fluid dynamics (CFD). Four kinds of Reynolds-averaged turbulence models, i.e. the standard k-ε model, the RNG (renormalization group) k-s model, the realizable k-ε model and the Reynolds stress model, are compared in detail in order to judge which is the best model in terms of the accuracy, less CPU time and memory required. The performance of the realizable k-s model is obviously improved by reducing the model constant from C2 = 1.90 to C2 = 1.61. It is concluded that the improved realizable k-e model is the optimal model. 展开更多
关键词 agitated extraction column turbulence models computational fluid dynamics
下载PDF
Analysis of drop deformation dynamics in turbulent flow 被引量:1
10
作者 Stephanie Nachtigall Daniel Zedel Matthias Kraume 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第2期264-277,共14页
Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be ... Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi- gated by high-speed imaging. In order to gain a statistically relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab was used for the evaluation of the resulting high amount of image data. This allowed the elimination of the time-consuming manual analysis and further- more, allowed the objective evaluation of the drops' behavior. Different deformation parameters were consid- ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (0axes), which was therefore approximated through an ellipse, allowed the determination of very small de- viations from the spherical shape. The perimeter of the particle (0peri) was used for the description of highly de- formed shapes. In this work the results of a higher viscosity paraffin oil (ηd =127 mPa. s) and a low viscosity solvent (petroleum, ηd = 1.7 mPa-s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimentally determined oscillation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de- formed particles, it is not assumed that a critical deformation value must be reached for the fragmentation pro- cess to occur. Especially for highly deformed particles thin particle filaments are assumed to induce the breakage process and, therefore, be responsible for the separation of drops. 展开更多
关键词 Drop deformation Drop breakage Liquid-liquid system Turbulent mixing Image analysis High-speed imaging
下载PDF
Numerical simulation and optimization design of the EGR cooler in vehicle 被引量:3
11
作者 Yu-qi HUANG Xiao-li YU Guo-dong LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第9期1270-1276,共7页
The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature... The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature distributions inside the EGR cooler. Three different models of EGR cooler are investigated, among which model A is a traditional one, and models B and C are improved by adding a helical baffle in the cooling area. In models B and C the entry directions of cooling water are different, which mostly influences the flow resistance. The results show that the improved structures not only lengthen the flow path of the cooling water, but also enhance the heat exchange rate between the cool and hot media. In conclusion we suggest that the improved structures are more powerful than the traditional one. 展开更多
关键词 Exhaust gas recirculation (EGR) cooler Computational fluid dynamics (CFD) Shell-and-tube heat exchanger Helical baffle
下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:3
12
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics (CFD) simulation flotation cell gas-liquid two-phases flow
下载PDF
Mixing in Shallow Waters: Measurements, Processing, and Applications
13
作者 Iossif Lozovatsky Elena Roget H.J.S.Fernado 《Journal of Ocean University of China》 SCIE CAS 2005年第4期293-305,共13页
Microstructure profiling measurements taken on a shallow Black Sea shelf and in Lake Banyoles and Boadella reservoir (Both in Spain) are analyzed to investigate the influence of boundary-layer-induced turbulence of ... Microstructure profiling measurements taken on a shallow Black Sea shelf and in Lake Banyoles and Boadella reservoir (Both in Spain) are analyzed to investigate the influence of boundary-layer-induced turbulence of various sources on mixing in the water interior. The state of turbulence in shallow waters is examined and details of microstructure data processing and error analysis are discussed. The dependence between averaged activity parameter A6 and buoyancy Reynolds number Reb for the shelf turbulence indicates that for Reb 〈 1 the state of turbulence can be described by the fossil turbulence model, which postulates AG - Re b^1/2. For Reb 〉 1, however, the influence of Reb on Ao is weak, signifying that the buoyancy Reynolds number can no longer serve as the governing parameter for active turbulent mixing. The generation of turbulence by a one-minute long wind bursts (the Boadella reservoir) increases the averaged dissipation rate (ε) of the surface mixed layer by more than 5 times (up to 3 × 10^-6 W kg^-1). The influence of the wind bursts was also traced below the thermocline, where turbulent patches with (ε) = (10^-7 - 10^-6) W kg^-1 were generated. It is shown that the geothermal convection in Lake Banyoles produces intermittent turbulent patches with characteristic dissipation rate (ε) = (2 × 10^-8- 3 × 10^-7) W kg^-1, which influences the overall vertical mixing in the basin. 展开更多
关键词 MIXING turbulence microstructure DISSIPATION DIFFUSIVITY CONVECTION shallow basins 1672-5182(2005)04-293-13
下载PDF
Advances in Studies on Turbulent Dispersed Multiphase Flows 被引量:4
14
作者 ZHOU Lixing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第6期889-898,共10页
Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronauti... Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review. 展开更多
关键词 dispersed flows multiphase flows turbulent flows FUNDAMENTALS numerical simulation
下载PDF
Introduction to the Turbulent Flows Theory An Axially-Symmetric Peaceful Flows 被引量:1
15
作者 Tomasz M. Jankowski 《Journal of Mechanics Engineering and Automation》 2013年第1期35-52,共18页
This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its ow... This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its own internal structure of motion, which is definite organization of motion, rather than a "molecular chaos", known from the fluid statics. The paper introduces the new notion of structures vector fields of power and momentum and shows every Newtonian fluid flows are dual in character. It shows that the flow of Newtonian fluid has a dual character. It demonstrates on models and further in mathematical interpretation of physical phenomena. It introduces, on the one hand, the cycloidal motion model into the fluid mechanics, ad on the other hand an addition to the known, the classical model of Poiseuille laminar motion. The theory of dualism (double nature of physical phenomena) allows the description of selected characteristics of the flow, either by using the theory ofcycloidal motion (semicycloidal), or by using the supplemented theory of laminar motion. The dualism theory is useful to describe each type of flows both, laminar and turbulent. This paper is only an introduction to the theory. It has been assigned number 1. It has been granted a high priority, since it contains basic concepts that will be used in others, following papers of long cycle. 展开更多
关键词 CYCLOID peaceful flow threshold Reynolds number.
下载PDF
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
16
作者 Yong Zhao Tianlin Wang Zhi Zong 《Journal of Marine Science and Application》 2014年第4期388-393,共6页
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d... As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior. 展开更多
关键词 transitional boundary layer flow Reynolds averaged numerical simulation (RANS) turbulence models low Reynolds correction Reynolds stress eddy viscosity
下载PDF
Nanoparticle Migration in a Fully Developed Turbulent Pipe Flow Considering the Particle Coagulation 被引量:1
17
作者 林建忠 刘淞 陈达良 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期679-685,共7页
Numerical simulations of nanoparticle migration in a fully developed turbulent pipe flow are performed.The evolution of particle number concentration,total particle mass,polydispersity,particle diameter and geometric ... Numerical simulations of nanoparticle migration in a fully developed turbulent pipe flow are performed.The evolution of particle number concentration,total particle mass,polydispersity,particle diameter and geometric standard deviation is obtained by using a moment method to approximate the particle general dynamic equation.The effects of Schmidt number and Damkhler number on the evolution of the particle parameters are analyzed.The results show that nanoparticles move to the pipe center.The particle number concentration and total particle mass are distributed non-uniformly along the radial direction.In an initially monodisperse particle field,the particle clusters with various sizes will be produced because of coagulation.As time progresses,the particle cluster diameter grows from an initial value at different rates depending on the radial position.The largest particle clusters are found in the pipe center.The particle cluster number concentration and total particle mass decrease with the increase of Schmidt number in the region near the pipe center,and the particles with lower Schmidt number are of many dif-ferent sizes,i.e.more polydispersity.The particle cluster diameter and geometric standard deviation increase with the increase of Damkhler number at the same radial position.The migration properties for nano-sized particles are different from that for micro-sized particles. 展开更多
关键词 NANOPARTICLE COAGULATION TURBULENT pipe flow
下载PDF
Chemical Kinetics for NO Emissions in System of Methane-Air Turbulent-Jet Diffusion Flame
18
作者 姜斌 梁红英 +1 位作者 黄国强 李鑫钢 《Transactions of Tianjin University》 EI CAS 2006年第6期404-409,共6页
An explicit expression for local, instantaneous NO production rate model was proposed to simulate NO formation in turbulent methane-air combustion. The average production rates of mixture fraction and scalar dissipati... An explicit expression for local, instantaneous NO production rate model was proposed to simulate NO formation in turbulent methane-air combustion. The average production rates of mixture fraction and scalar dissipation were obtained from asymptotes through approximation of two single-variable probability-density function. The theory predicted significant contributions from the Zeldovich mechanism, but negligible contributions from the nitrous-oxide mechanism in the oxygenconsumption zone. The proposed model was used to simulate NO formation in the pilot methane-air jet diffusion combustion. The simulation results were compared with those obtained by the CFD software FLUENT module. Validation of predictions with the experimental data given by Sandia National Laboratory of the USA indicates that the proposed model yields better results than other models, and the deviation is under 5%. And in some complete reaction zones, the simulation results are even the same as the experimental data. Realizable κ-ε model, Reynold stress model and standard κ-ε model were also investigated to predict the turbulent combustion reaction, which shows that the simulation results of velocities, temperatures, and concentrations of combustion productions by standard κ-ε model are in accordance with the experimental data. 展开更多
关键词 NO formation chemical kinetics turbulent model oxygen atom equation
下载PDF
Dynamics Behaviors and Scaling in Intermittent Turbulence of a Shell Model
19
作者 SUN Peng CHEN Shi-Gang WANG Guang-Rui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第1期149-152,共4页
In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase dia... In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase diagram on fo-δ parameter surface, which is divided into periodic, quasi-periodic, and intermittent chaos areas. By means of varying Taylor-microscale Reynolds number, we calculate the extended self-similarity of velocity structure function. 展开更多
关键词 saddle node bifurcation critical scaling Taylor-microscale Reynolds number extended self-similarity (ESS)
下载PDF
CFD Simulation of Propane Cracking Tube Using Detailed Radical Kinetic Mechanism 被引量:7
20
作者 张楠 邱彤 陈丙珍 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第12期1319-1331,共13页
In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor t... In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme,combined with a comprehensive rigorous computational fluid dynamics(CFD)model.The eddy-dissipation-concept(EDC)model is introduced to deal with turbulence-chemistry interaction of cracking gas,especially for the multi-step radical kinetics.Considering the high aspect ratio and severe gradient phenomenon,numerical strategies such as grid resolution and refinement,stepping method and relaxation technique at different levels are employed to accelerate convergence.Large scale of radial nonuniformity in the vicinity of the tube wall is investigated.Spatial distributions of each radical reaction rate are first studied,and made it possible to identify the dominant elementary reactions.Additionally,a series of operating conditions including the feedstock feed rate,wall temperature profile and heat flux profile towards the reactor tubes are investigated.The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process. 展开更多
关键词 numerical simulation cracking tube computational fluid dynamics(CFD) detailed radical kinetics
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部