The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative h...The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.展开更多
The present work focuses on experimental and numerical investigations of the augmentation of turbulent flow heat transfer in a horizontal circular tube by means of mesh inserts with air as the working fluid. Sixteen t...The present work focuses on experimental and numerical investigations of the augmentation of turbulent flow heat transfer in a horizontal circular tube by means of mesh inserts with air as the working fluid. Sixteen types of mesh inserts with screen diameters of 22 mm, 18 mm, 14 mm and 10 mm for varying distance between the screens of 50 mm, 100 mm, 150 mm and 200 mm in the porosity range of 99.73 to 99.98 were considered for experimentation. The horizontal tube was subjected to constant and uniform heat flux. The Reynolds number varied from 7,000 to 14,000. The results are compared with the clear flow case when no porous material was used. Computational fluid dynamics (CFD) techniques were also employed to perform optimization analysis of the mesh inserts. The horizontal tube along with mesh inserts was modeled in Gambit 2.2.30 with fine meshing and analyzed using FLUENT 6.2.16. CFD analysis was performed initially for plain tube and the results are compared with experimental values for validation.展开更多
The characteristics of a laminar wall jet submitted to different configurations have been experimentally explored in order to obtain a better knowledge of transition modifications,In fact different parameters can acce...The characteristics of a laminar wall jet submitted to different configurations have been experimentally explored in order to obtain a better knowledge of transition modifications,In fact different parameters can accelerate or delay the transition using a smooth or rough surface,heated or not,submitted to vibrations or not .In this study,significant effects can be noticed.It has been possible to measure the beginning of growth rates of disturbance amplitude using a wind tunnel and comparing the results with the linear stability theory.展开更多
基金Supported by the National Natural Science Foundation of China (No. 59995550-3) and Science Funds from the Ministry of Education (No. 97000357).
文摘The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.
文摘The present work focuses on experimental and numerical investigations of the augmentation of turbulent flow heat transfer in a horizontal circular tube by means of mesh inserts with air as the working fluid. Sixteen types of mesh inserts with screen diameters of 22 mm, 18 mm, 14 mm and 10 mm for varying distance between the screens of 50 mm, 100 mm, 150 mm and 200 mm in the porosity range of 99.73 to 99.98 were considered for experimentation. The horizontal tube was subjected to constant and uniform heat flux. The Reynolds number varied from 7,000 to 14,000. The results are compared with the clear flow case when no porous material was used. Computational fluid dynamics (CFD) techniques were also employed to perform optimization analysis of the mesh inserts. The horizontal tube along with mesh inserts was modeled in Gambit 2.2.30 with fine meshing and analyzed using FLUENT 6.2.16. CFD analysis was performed initially for plain tube and the results are compared with experimental values for validation.
文摘The characteristics of a laminar wall jet submitted to different configurations have been experimentally explored in order to obtain a better knowledge of transition modifications,In fact different parameters can accelerate or delay the transition using a smooth or rough surface,heated or not,submitted to vibrations or not .In this study,significant effects can be noticed.It has been possible to measure the beginning of growth rates of disturbance amplitude using a wind tunnel and comparing the results with the linear stability theory.