期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
六种近地层湍流动量输送系数计算方案对比分析 被引量:8
1
作者 胡艳冰 高志球 +2 位作者 沙文钰 肖涛 高超 《应用气象学报》 CSCD 北大核心 2007年第3期407-411,共5页
选取30多年来近地层湍流通量研究中具有代表性的六种参数化方案,应用GAME/Tibet试验中那曲通量观测站的实测资料,对比分析了各方案计算所得的湍流动量输送系数(CM)之间的差异。结果表明:六种参数化方案计算得到的湍流动量输送系数之间... 选取30多年来近地层湍流通量研究中具有代表性的六种参数化方案,应用GAME/Tibet试验中那曲通量观测站的实测资料,对比分析了各方案计算所得的湍流动量输送系数(CM)之间的差异。结果表明:六种参数化方案计算得到的湍流动量输送系数之间存在较大差异。对于那曲观测站稀疏短草下垫面而言,稳定条件下当理查孙数小于0.1时,除Businger71方案存在显著低估以外,其他各方案均能较好估算湍流动量输送系数;不稳定条件下,Dyer74方案对湍流动量输送系数的估算效果最好,其次为Wang02,Launiainen95和Louis82方案,Businger71方案误差较大。 展开更多
关键词 空气动力学粗糙度 湍流动量输送系数 参数化方案
下载PDF
湍流输送的非线性热力学性质
2
作者 左洪超 胡隐樵 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2005年第6期1233-1237,共5页
湍流输送是一种热力学不可逆过程,本文利用非线性热力学研究了湍流输送的特征.将热力学流对热力学力以平衡态作为参考态进行Taylor展开,可以得到湍流输送系数是系统宏观参量梯度的Taylor级数.线性湍流输送系数是Reynolds湍流闭合方案的... 湍流输送是一种热力学不可逆过程,本文利用非线性热力学研究了湍流输送的特征.将热力学流对热力学力以平衡态作为参考态进行Taylor展开,可以得到湍流输送系数是系统宏观参量梯度的Taylor级数.线性湍流输送系数是Reynolds湍流闭合方案的K闭合湍流输送系数;而湍流输送系数非线性项则是系统偏离热力学平衡态所造成的热力学非线性效应.湍流输送系数这一热力学性质提供了一种热力学湍流闭合方案.线性湍流输送系数是正定的,湍流输送只能使系统宏观参量均匀化;而在远离平衡态的热力学非线性区,可能导致湍流输送系数负黏性现象.在最小熵产生态的条件下,热力学流对热力学力Taylor展开的各级系数间存在一种递推关系.利用这种递推关系大大减少了由实验确定的Taylor级数的系数个数. 展开更多
关键词 湍流输送 不可逆过程 非线性热力学 湍流闭合 湍流输送系数
下载PDF
Macro and micro issues in turbulent mixing
3
作者 MELVIN J KAUFMAN R +3 位作者 LIM H KAMAN T RAO P GLIMM J 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第10期2355-2360,共6页
Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixin... Numerical prediction of turbulent mixing can be divided into two subproblems: to predict the geometrical extent of a mixing region and to predict the mixing properties on an atomic or molecular scale, within the mixing region. The former goal suffices for some purposes, while important problems of chemical reactions(e.g. flames) and nuclear reactions depend critically on the second goal in addition to the first one. Here we review recent progress in establishing a conceptual reformulation of convergence, and we illustrate these concepts with a review of recent numerical studies addressing turbulence and mixing in the high Reynolds number limit. We review significant progress on the first goal, regarding the mixing region, and initial progress on the second goal, regarding atomic level mixing properties. New results concerning non-uniqueness of the infinite Reynolds number solutions and other consequences of a renormalization group point of view, to be published in detail elsewhere, are summarized here.The notion of stochastic convergence(of probability measures and probability distribution functions) replaces traditional pointwise convergence. The primary benefit of this idea is its increased stability relative to the statistical "noise" which characterizes turbulent flow. Our results also show that this modification of convergence, with sufficient mesh refinement, may not be needed. However, in practice, mesh refinement is seldom sufficient and the stochastic convergence concepts have a role.Related to this circle of ideas is the observation that turbulent mixing, in the limit of high Reynolds number, appears to be non-unique. Not only have multiple solutions been observed(and published) for identical problems, but simple physics based arguments and more refined arguments based on the renormalization group come to the same conclusion.Because of the non-uniqueness inherent in numerical models of high Reynolds number turbulence and mixing, we also include here numerical examples of validation. The algorithm we use here has two essential components. We depend on Front Tracking to allow accurate resolution of flows with sharp interfaces or steep gradients(concentration or thermal), as are common in turbulent mixing problems. The higher order and enhanced algorithms for interface tracking, both those already developed, and those proposed here, allow a high resolution and uniquely accurate description of sample mixing problems. Additionally, we depend on the use of dynamic subgrid scale models to set otherwise missing values for turbulent transport coefficients, a step that breaks the non-uniqueness. 展开更多
关键词 stochastic convergence turbulent mixing renormalization group dynamic subgrid scale models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部