Quantitative paleotemperature records are vital not only for verifying and improving the accuracy of climate model simulations, but also for estimating the amplitude of temperature variability under global warming sce...Quantitative paleotemperature records are vital not only for verifying and improving the accuracy of climate model simulations, but also for estimating the amplitude of temperature variability under global warming scenarios. The Tibetan Plateau(TP) affects atmospheric circulation patterns due to its unique geographical location and high elevation, and studies of the mechanisms of climate change on the TP are potentially extremely valuable for understanding the relationship of the region with the global climate system. With the development of biomarker-based proxies, it is possible to use lake sediments to quantitatively reconstruct past temperature variability. The source of Glycerol Dialkyl Glycerol Tetraethers(GDGTs) in lake sediments is complex, and their distribution is controlled by both climatic and environmental factors. In this work, we sampled the surface sediments of 27 lakes on the TP and in addition obtained surface soil samples from six of the lake catchments. We analyzed the factors that influence GDGT distribution in the lake sediments, and established quantitative relationship between GDGTs and Mean Annual Air Temperature(MAAT). Our principal findings are as follows: the majority of GDGTs in the lake sediments are b GDGTs, followed by crenarchaeol and GDGT-0. In most of the lakes there were no significant differences between the GDGT distribution within the lake sediments and the soils in the same catchment, which indicates that the contribution of terrestrial material is important. i GDGTs in lake sediments are mainly influenced by water chemistry parameters(p H and salinity), and that in small lakes on the TP, TEX_(86) may act as a potential proxy for lake p H; however, in contrast b GDGTs in the lake sediments are mainly controlled by climatic factors. Based on the GDGT distribution in the lake sediments, we used proxies(MBT, CBT) and the fractional abundance of b GDGTs(f_(abun)) to establish calibrations between GDGTs and MAAT, respectively, which potentially provide the basis for paleoclimatic reconstruction on the TP.展开更多
The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences...The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences between the pollen assem- blages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region (desert, steppe, mead- ow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the dif- ferent relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of sur- face lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the ten- dency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae (A/C) ratio in pollen assemblages of surface lake sedi- ments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.展开更多
The 1-O-monoalkyl glycerol ethers (MAGEs) were initially viewed as the biomarkers for sulfate-reducing bacteria (SRB) me- diating anaerobic oxidation of methane in the marine environments. However, limited informa...The 1-O-monoalkyl glycerol ethers (MAGEs) were initially viewed as the biomarkers for sulfate-reducing bacteria (SRB) me- diating anaerobic oxidation of methane in the marine environments. However, limited information is known about their distri- bution in terrestrial and other aquatic settings including soils, fresh water lakes, and cave sediments, which may obscure our understanding of their biological sources. Here we found that MAGEs were ubiquitous but differed obviously in distributional pattern among those environments. The surface soils are dominated generally by iC15:0-MAGE, followed by nCI6:o-MAGE whereas the lake sediments show the opposite, resulting in significantly higher iC15:0/nC16:0 ratios in soils than in lake sedi- ments. The cave deposits are characterized by considerably higher proportions of branched MAGEs than the former two envi- ronments. The logarithm of iC15:0/aC15:0 ratio shows a significant negative correlation with soil pH, likely reflecting an adapta- tion of microbial cell membrane to change in the ambient proton concentration. The MAGE profiles in cultured bacteria cannot fully explain the MAGE distribution in all the samples analyzed. Therefore, MAGEs in soil, lake sediments, and cave deposits likely have additional biological source(s) other than SRB and cultured MAGE-producing bacteria. The difference in MAGE pattern among environments is likely to be attributed to change in microbial communities.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41072120 & 41321061)
文摘Quantitative paleotemperature records are vital not only for verifying and improving the accuracy of climate model simulations, but also for estimating the amplitude of temperature variability under global warming scenarios. The Tibetan Plateau(TP) affects atmospheric circulation patterns due to its unique geographical location and high elevation, and studies of the mechanisms of climate change on the TP are potentially extremely valuable for understanding the relationship of the region with the global climate system. With the development of biomarker-based proxies, it is possible to use lake sediments to quantitatively reconstruct past temperature variability. The source of Glycerol Dialkyl Glycerol Tetraethers(GDGTs) in lake sediments is complex, and their distribution is controlled by both climatic and environmental factors. In this work, we sampled the surface sediments of 27 lakes on the TP and in addition obtained surface soil samples from six of the lake catchments. We analyzed the factors that influence GDGT distribution in the lake sediments, and established quantitative relationship between GDGTs and Mean Annual Air Temperature(MAAT). Our principal findings are as follows: the majority of GDGTs in the lake sediments are b GDGTs, followed by crenarchaeol and GDGT-0. In most of the lakes there were no significant differences between the GDGT distribution within the lake sediments and the soils in the same catchment, which indicates that the contribution of terrestrial material is important. i GDGTs in lake sediments are mainly influenced by water chemistry parameters(p H and salinity), and that in small lakes on the TP, TEX_(86) may act as a potential proxy for lake p H; however, in contrast b GDGTs in the lake sediments are mainly controlled by climatic factors. Based on the GDGT distribution in the lake sediments, we used proxies(MBT, CBT) and the fractional abundance of b GDGTs(f_(abun)) to establish calibrations between GDGTs and MAAT, respectively, which potentially provide the basis for paleoclimatic reconstruction on the TP.
基金supported by the National Basic Research Program of China(Grant No.2012CB956102)the National Natural Science Foundation of China(Grant Nos.41071126,41125006,41401227)the China Postdoctoral Science Foundation(Grant No.2014M550822)
文摘The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences between the pollen assem- blages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region (desert, steppe, mead- ow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the dif- ferent relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of sur- face lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the ten- dency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae (A/C) ratio in pollen assemblages of surface lake sedi- ments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.
基金supported by the National Basic Research Program of China(Grant No.2011CB808800)the National Natural Science Foundation of China(Grant No.41330103)the"111"Project(Grant No.B08030)
文摘The 1-O-monoalkyl glycerol ethers (MAGEs) were initially viewed as the biomarkers for sulfate-reducing bacteria (SRB) me- diating anaerobic oxidation of methane in the marine environments. However, limited information is known about their distri- bution in terrestrial and other aquatic settings including soils, fresh water lakes, and cave sediments, which may obscure our understanding of their biological sources. Here we found that MAGEs were ubiquitous but differed obviously in distributional pattern among those environments. The surface soils are dominated generally by iC15:0-MAGE, followed by nCI6:o-MAGE whereas the lake sediments show the opposite, resulting in significantly higher iC15:0/nC16:0 ratios in soils than in lake sedi- ments. The cave deposits are characterized by considerably higher proportions of branched MAGEs than the former two envi- ronments. The logarithm of iC15:0/aC15:0 ratio shows a significant negative correlation with soil pH, likely reflecting an adapta- tion of microbial cell membrane to change in the ambient proton concentration. The MAGE profiles in cultured bacteria cannot fully explain the MAGE distribution in all the samples analyzed. Therefore, MAGEs in soil, lake sediments, and cave deposits likely have additional biological source(s) other than SRB and cultured MAGE-producing bacteria. The difference in MAGE pattern among environments is likely to be attributed to change in microbial communities.