Electrochemical CO_(2) reduction reaction(CO_(2)RR),powered by renewable energy,emerges as a promising approach against environmental issues and energy crisis by converting CO_(2) into val‐ue‐added chemicals.Single ...Electrochemical CO_(2) reduction reaction(CO_(2)RR),powered by renewable energy,emerges as a promising approach against environmental issues and energy crisis by converting CO_(2) into val‐ue‐added chemicals.Single atom catalysts(SACs)with isolated metal atoms dispersed on supports exhibit outstanding performance for CO_(2) electroreduction,because of their strong single at‐om‐support interactions,maximum metal utilization and excellent catalytic activity.However,SACs suffer from agglomeration of particles,low metal loading,and difficulty in large‐scale production.In addition,molecular catalysts as another single atom‐based catalyst,consisting of ligands molecules connected to metal ions,exhibited similar metal‐nitrogen(M‐N)active centers as that in met‐al‐nitrogen‐carbon(M‐N‐C)SACs,which were highly active to CO_(2) reduction due to their well‐defined active sites and tunability over the steric and electronic properties of the active sites.Nonetheless,molecular catalysts are challenged by generally moderate activity,selectivity and sta‐bility,poor conductivity and aggregation.Many works have been devoted to overcoming these is‐sues of SACs and molecular catalysts for efficient CO_(2)RR,but only limited reviews for systematic summary of their fabrication,application,and characterizations,which were highlighted in this review.Firstly,we summarize recent advanced strategies in preparing SACs for CO_(2)RR,including wet‐chemistry approaches(defect engineering,spatial confinement,and coordination design),other synthetic methods and large‐scale production of SACs.Besides,electrochemical applications of SACs and molecular catalysts on CO_(2)RR are discussed,which involved the faradaic efficiency and partial current density of the desired product as well as the catalyst stability.In addition,ex‐situ and in‐situ/operando characterization techniques are briefly assessed,benefiting probing the active sites and understanding the CO_(2)RR catalytic mechanisms.Finally,future directions for the devel‐opment of single atom‐based catalysts(SACs,molecular catalysts)are pointed out.展开更多
As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which i...As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which intensified N biogeochemical activities take place. Reactive N loaded into wetland ecosystems has been doubled due to various human activities, including industrial, agricultural activities and urbanization. The main driving mechanisms of N transport and transformation in lacustrine wetlands are categorized to pushing forces and pulling forces in this study. Geomorphology, wetland age, N concentrations, and temperature are the main pushing forces(passive forces); whereas water table variation, oxygen concentration, other elements availability, oxidation-reduction potential(Eh) and p H, and microorganisms are the predominant pulling forces(active forces). The direction and kinetic energy of reactions are determined by pulling forces and then are stimulated by pushing forces. These two types of forces are analyzed and discussed separately. Based on the analysis of driving mechanisms, possible solutions to wetland N pollutions are proposed at individual, regional and global scales, respectively. Additional research needs are addressed to obtain a thorough understanding of N transport and transformations in wetlands and to reduce detrimental impacts of excessive N on such fragile ecosystems.展开更多
基金supported by the Australian Research Council(FT170100224)。
文摘Electrochemical CO_(2) reduction reaction(CO_(2)RR),powered by renewable energy,emerges as a promising approach against environmental issues and energy crisis by converting CO_(2) into val‐ue‐added chemicals.Single atom catalysts(SACs)with isolated metal atoms dispersed on supports exhibit outstanding performance for CO_(2) electroreduction,because of their strong single at‐om‐support interactions,maximum metal utilization and excellent catalytic activity.However,SACs suffer from agglomeration of particles,low metal loading,and difficulty in large‐scale production.In addition,molecular catalysts as another single atom‐based catalyst,consisting of ligands molecules connected to metal ions,exhibited similar metal‐nitrogen(M‐N)active centers as that in met‐al‐nitrogen‐carbon(M‐N‐C)SACs,which were highly active to CO_(2) reduction due to their well‐defined active sites and tunability over the steric and electronic properties of the active sites.Nonetheless,molecular catalysts are challenged by generally moderate activity,selectivity and sta‐bility,poor conductivity and aggregation.Many works have been devoted to overcoming these is‐sues of SACs and molecular catalysts for efficient CO_(2)RR,but only limited reviews for systematic summary of their fabrication,application,and characterizations,which were highlighted in this review.Firstly,we summarize recent advanced strategies in preparing SACs for CO_(2)RR,including wet‐chemistry approaches(defect engineering,spatial confinement,and coordination design),other synthetic methods and large‐scale production of SACs.Besides,electrochemical applications of SACs and molecular catalysts on CO_(2)RR are discussed,which involved the faradaic efficiency and partial current density of the desired product as well as the catalyst stability.In addition,ex‐situ and in‐situ/operando characterization techniques are briefly assessed,benefiting probing the active sites and understanding the CO_(2)RR catalytic mechanisms.Finally,future directions for the devel‐opment of single atom‐based catalysts(SACs,molecular catalysts)are pointed out.
基金National Natural Science Foundation of China(51002126)Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(10zxfk30)
基金the National Natural Science Foundation of China (Grant No. 41272249)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110072110020)
文摘As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which intensified N biogeochemical activities take place. Reactive N loaded into wetland ecosystems has been doubled due to various human activities, including industrial, agricultural activities and urbanization. The main driving mechanisms of N transport and transformation in lacustrine wetlands are categorized to pushing forces and pulling forces in this study. Geomorphology, wetland age, N concentrations, and temperature are the main pushing forces(passive forces); whereas water table variation, oxygen concentration, other elements availability, oxidation-reduction potential(Eh) and p H, and microorganisms are the predominant pulling forces(active forces). The direction and kinetic energy of reactions are determined by pulling forces and then are stimulated by pushing forces. These two types of forces are analyzed and discussed separately. Based on the analysis of driving mechanisms, possible solutions to wetland N pollutions are proposed at individual, regional and global scales, respectively. Additional research needs are addressed to obtain a thorough understanding of N transport and transformations in wetlands and to reduce detrimental impacts of excessive N on such fragile ecosystems.