Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland ...Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland changes to appropriately manage and protect wetland resources; however, it is quite difficult to accurately extract such information from remote sensing images due to spectral confusion and arduous field verification. In this study, we identified different wetland types in the Damqu River Basin located in the Yangze River source region from Landsat remote sensing data using the object-based method. In order to ensure the interpretation accuracy of wetland, a digital elevation model (DEM) and its derived data (slope, aspect), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Kauth-Thomas transformation were considered as the components of the spectral characteristics of wetland types. The spectral characteristics, texture features and spatial structure characteristics of each wetland type were comprehensively analyzed based on the success of image segmentation. The extraction rules for each wetland type were established by determining the thresholds of the spatial, texture and spectral attributes of typical parameter layers according to their histogram statistics. The classification accuracy was assessed using error matrixes and field survey verification data. According to the accuracy assessment, the total accuracy of image classification was 89%.展开更多
Successful biological monitoring depends on judicious classification. An attempt has been made to provide an overview of important characteristics of marsh wetland. Classification was used to describe ecosystems and l...Successful biological monitoring depends on judicious classification. An attempt has been made to provide an overview of important characteristics of marsh wetland. Classification was used to describe ecosystems and land cover patterns. Different spatial resolution images show different landscape characteristics. Several classification images were used to map and monitor wetland ecosystems of Honghe National Nature Reserve (HNNR) at a plant community scale. HNNR is a typical inland wetland and fresh water ecosystem in the North Temperate Zone. SPOT-5 10 m ×10 m, 20 m × 20 m, and 30 m×30 m images and Landsat -5 Thematic Mapper (TM) images were used to classify based on maximum likelihood classification (MLC) algorithms. In order to validate the precision of the classifications, this study used aerial photography classification maps as training samples because of their high accuracy. The accuracy of the derived classes was assessed with the discrete multivariate technique called KAPPA accuracy. The results indicate: (1) training samples are important to classification results. (2) Image classification accuracy is always affected by areal fraction and aggregation degree as well as by diversities and patch shape. (3) The core zone area is protected better than buffer zone and experimental zone wetland. The experimental zone degrades fast because of irrational development by humans.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
基金funded by National Natural Science Foundation of China (Grant No.40901057)National Basic Research Program of China (Grant No.2010CB951704)
文摘Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland changes to appropriately manage and protect wetland resources; however, it is quite difficult to accurately extract such information from remote sensing images due to spectral confusion and arduous field verification. In this study, we identified different wetland types in the Damqu River Basin located in the Yangze River source region from Landsat remote sensing data using the object-based method. In order to ensure the interpretation accuracy of wetland, a digital elevation model (DEM) and its derived data (slope, aspect), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Kauth-Thomas transformation were considered as the components of the spectral characteristics of wetland types. The spectral characteristics, texture features and spatial structure characteristics of each wetland type were comprehensively analyzed based on the success of image segmentation. The extraction rules for each wetland type were established by determining the thresholds of the spatial, texture and spectral attributes of typical parameter layers according to their histogram statistics. The classification accuracy was assessed using error matrixes and field survey verification data. According to the accuracy assessment, the total accuracy of image classification was 89%.
基金jointly supported by the National Science and Technology Support Program(No.2013BAC03B05)Ecological environment evaluation of disaster area(No.O7M73120AM)
文摘Successful biological monitoring depends on judicious classification. An attempt has been made to provide an overview of important characteristics of marsh wetland. Classification was used to describe ecosystems and land cover patterns. Different spatial resolution images show different landscape characteristics. Several classification images were used to map and monitor wetland ecosystems of Honghe National Nature Reserve (HNNR) at a plant community scale. HNNR is a typical inland wetland and fresh water ecosystem in the North Temperate Zone. SPOT-5 10 m ×10 m, 20 m × 20 m, and 30 m×30 m images and Landsat -5 Thematic Mapper (TM) images were used to classify based on maximum likelihood classification (MLC) algorithms. In order to validate the precision of the classifications, this study used aerial photography classification maps as training samples because of their high accuracy. The accuracy of the derived classes was assessed with the discrete multivariate technique called KAPPA accuracy. The results indicate: (1) training samples are important to classification results. (2) Image classification accuracy is always affected by areal fraction and aggregation degree as well as by diversities and patch shape. (3) The core zone area is protected better than buffer zone and experimental zone wetland. The experimental zone degrades fast because of irrational development by humans.