期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于深度学习的洪河保护区沼泽湿地分类研究
1
作者 孔圆圆 《安徽农学通报》 2024年第1期60-63,共4页
本文以黑龙江省洪河保护区为研究区,选取OHS高光谱数据为数据源,采用深度学习SegNet网络模型和随机森林机器学习算法进行沼泽湿地遥感分类定量研究对比分析,SegNet网络模型由encoder和decoder两部分组成,encoder模型是沿用VGG16对物体... 本文以黑龙江省洪河保护区为研究区,选取OHS高光谱数据为数据源,采用深度学习SegNet网络模型和随机森林机器学习算法进行沼泽湿地遥感分类定量研究对比分析,SegNet网络模型由encoder和decoder两部分组成,encoder模型是沿用VGG16对物体信息进行解析,再由decoder将解析后的信息对应成最终的图形模型。结果表明,基于深度学习方法的信息提取精度0.903优于随机森林RF算法0.837,制图效果更好,能更深层次地挖掘高光谱数据包含的深层信息,精准表示洪河自然保护区内部结构的空间分布格局,为湿地保护提供一定的参考。 展开更多
关键词 高光谱 深度学习 随机森林 湿地遥感分类 洪河自然保护区
下载PDF
基于支持向量机的扎龙湿地遥感分类研究 被引量:46
2
作者 张策 臧淑英 +1 位作者 金竺 张玉红 《湿地科学》 CSCD 2011年第3期263-269,共7页
湿地遥感分类是实现湿地动态监测、管理与利用的重要手段之一。由于湿地具有独特的生态环境,获取实测样本点相对困难,因此,研究小样本、高精度的湿地遥感分类方法十分必要。以扎龙国家级自然保护区为研究区,采用支持向量机方法进行了研... 湿地遥感分类是实现湿地动态监测、管理与利用的重要手段之一。由于湿地具有独特的生态环境,获取实测样本点相对困难,因此,研究小样本、高精度的湿地遥感分类方法十分必要。以扎龙国家级自然保护区为研究区,采用支持向量机方法进行了研究区湿地遥感分类研究,初步剖析了样本数量与特征维度对分类结果的影响,并同传统的最大似然分类方法进行了比较。研究结果显示,支持向量机分类结果一般优于最大似然分类结果,尤其在小样本、高维度下,支持向量机方法具有较大优势。当每类样本数为100时,支持向量机高维分类结果总精度最高,达到88.125%,分类获得的扎龙保护区湿地总面积为90307.17hm2,其中水体面积为8301.15hm2,积水沼泽面积为33063.57hm2,无积水沼泽面积为48942.45hm2。研究结果表明,支持向量机方法是湿地遥感分类的有效手段。 展开更多
关键词 扎龙国家级自然保护区 支持向量机 湿地遥感分类 样本数量 特征维度
原文传递
基于卷积神经网络和高分辨率影像的湿地群落遥感分类——以洪河湿地为例 被引量:12
3
作者 孟祥锐 张树清 臧淑英 《地理科学》 CSSCI CSCD 北大核心 2018年第11期1914-1923,共10页
以洪河国家级自然保护区为研究对象,应用卷积神经网络(CNN)方法进行高分辨率湿地遥感影像的分类研究,并与基于光谱支持向量机(SP-SVM)的方法和基于纹理及光谱的支持向量机(TSP-SVM)的方法进行了对比。结果显示,对于所选取的2个研究区域,... 以洪河国家级自然保护区为研究对象,应用卷积神经网络(CNN)方法进行高分辨率湿地遥感影像的分类研究,并与基于光谱支持向量机(SP-SVM)的方法和基于纹理及光谱的支持向量机(TSP-SVM)的方法进行了对比。结果显示,对于所选取的2个研究区域,CNN分类方法的全局精度高于SP—SVM方法5.61%和5%,高于TSP—SVM方法4.18%和4.15%。尤其对于部分湿地植被的分类精度明显高于SP—SVM和TSP-SVM方法。研究表明,卷积神经网络为湿地识别的精细划分提供了有利的手段。 展开更多
关键词 湿地遥感分类 卷积神经网络 高分辨率 洪河自然保护区
下载PDF
三江源区湖泊和沼泽遥感影像分类研究 被引量:21
4
作者 温兆飞 张树清 +3 位作者 陈春 刘春悦 李晓峰 李华朋 《湿地科学》 CSCD 2010年第2期132-138,共7页
为了进一步了解三江源区的湿地分布现状,尝试利用MODIS 16天合成的归一化植被指数(NDVI)数据,采用决策树分类方法对三江源区湿地的遥感影像进行了分类研究。在数据预处理时,采用中值滤波和主成分变换结合的方法有效地去除了MODIS数据的... 为了进一步了解三江源区的湿地分布现状,尝试利用MODIS 16天合成的归一化植被指数(NDVI)数据,采用决策树分类方法对三江源区湿地的遥感影像进行了分类研究。在数据预处理时,采用中值滤波和主成分变换结合的方法有效地去除了MODIS数据的噪声;在决策树构建过程中,结合DEM数据有效地提取出湖泊;利用象元NDVI时序变化曲线规律,采用先控制曲线形状、再控制拐点阈值的方法对沼泽进行分类。通过精度验证,湖泊的分类精度达到了96.5%,总的分类精度达到了84.2%,Kappa系数为0.78。利用MODIS NDVI时间序列数据和决策树方法能够满足大范围区域湖泊和沼泽遥感影像分类要求。 展开更多
关键词 三江源 决策树 湿地遥感影像分类 MODIS 归一化植被指数
下载PDF
Scale Issues of Wetland Classification and Mapping Using Remote Sensing Images: A Case of Honghe National Nature Reserve in Sanjiang Plain, Northeast China 被引量:5
5
作者 GONG Huili JIAO Cuicui +1 位作者 ZHOU Demin LI Na 《Chinese Geographical Science》 SCIE CSCD 2011年第2期230-240,共11页
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth... Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images. 展开更多
关键词 wetland classification remote sensing image spatial resolution SCALE mapping wetland
下载PDF
Identifying Alpine Wetlands in the Damqu River Basin in the Source Area of the Yangtze River Using Object-based Classification Method 被引量:2
6
作者 张继平 张镱锂 +2 位作者 刘林山 丁明军 张学儒 《Journal of Resources and Ecology》 CSCD 2011年第2期186-192,共7页
Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland ... Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland changes to appropriately manage and protect wetland resources; however, it is quite difficult to accurately extract such information from remote sensing images due to spectral confusion and arduous field verification. In this study, we identified different wetland types in the Damqu River Basin located in the Yangze River source region from Landsat remote sensing data using the object-based method. In order to ensure the interpretation accuracy of wetland, a digital elevation model (DEM) and its derived data (slope, aspect), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Kauth-Thomas transformation were considered as the components of the spectral characteristics of wetland types. The spectral characteristics, texture features and spatial structure characteristics of each wetland type were comprehensively analyzed based on the success of image segmentation. The extraction rules for each wetland type were established by determining the thresholds of the spatial, texture and spectral attributes of typical parameter layers according to their histogram statistics. The classification accuracy was assessed using error matrixes and field survey verification data. According to the accuracy assessment, the total accuracy of image classification was 89%. 展开更多
关键词 alpine wetland remote sensing object-based classification Damqu River Basin
原文传递
Remote Sensing Classification of Marsh Wetland with Different Resolution Images 被引量:4
7
作者 李娜 谢高地 +2 位作者 周德民 张昌顺 焦翠翠 《Journal of Resources and Ecology》 CSCD 2016年第2期107-114,共8页
Successful biological monitoring depends on judicious classification. An attempt has been made to provide an overview of important characteristics of marsh wetland. Classification was used to describe ecosystems and l... Successful biological monitoring depends on judicious classification. An attempt has been made to provide an overview of important characteristics of marsh wetland. Classification was used to describe ecosystems and land cover patterns. Different spatial resolution images show different landscape characteristics. Several classification images were used to map and monitor wetland ecosystems of Honghe National Nature Reserve (HNNR) at a plant community scale. HNNR is a typical inland wetland and fresh water ecosystem in the North Temperate Zone. SPOT-5 10 m ×10 m, 20 m × 20 m, and 30 m×30 m images and Landsat -5 Thematic Mapper (TM) images were used to classify based on maximum likelihood classification (MLC) algorithms. In order to validate the precision of the classifications, this study used aerial photography classification maps as training samples because of their high accuracy. The accuracy of the derived classes was assessed with the discrete multivariate technique called KAPPA accuracy. The results indicate: (1) training samples are important to classification results. (2) Image classification accuracy is always affected by areal fraction and aggregation degree as well as by diversities and patch shape. (3) The core zone area is protected better than buffer zone and experimental zone wetland. The experimental zone degrades fast because of irrational development by humans. 展开更多
关键词 Remote sensing classification Marsh wetland HNNR aerial photography image SPOT-5 TM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部