Stabilization and volume reduction Of spent radioactive ion-exchange resins (IERs) were studied. Stabilization technology includes volume reduction with wet Chemical oxidation process and immobilization of the residue...Stabilization and volume reduction Of spent radioactive ion-exchange resins (IERs) were studied. Stabilization technology includes volume reduction with wet Chemical oxidation process and immobilization of the residue into cement. Under suitable conditions, the exhaussted radioactive ion-exchange resins were dissolved successfully in a H2,O2-Fe2+/Cu2+ catalytic oxidation system (Fenton reagent). The analytical results indicated that the radioactive nuclides loaded in the resins were concentrated in decomposed solution and solid residues. The process parameters of wet chemical oxidation and solidification were also obtained. The decomposition ratios were 100% and more than 90% for canon and anion IERs respectively. The waste volume was decreased by 40% compared with that of original spent resins.展开更多
In this paper, the influence of working electrolyte on high-frequency electrical performance of wet tantalum capacitors is studied. Emphasis is especially put on the study of the contribution of depolariser in reducin...In this paper, the influence of working electrolyte on high-frequency electrical performance of wet tantalum capacitors is studied. Emphasis is especially put on the study of the contribution of depolariser in reducing Equivalent Series Resistance(ESR). According to the theory of depolarization in electrochemistry and the theory of cathode capacitance of electrolytic capacitor, different kinds of depolarisers are added separately into the foregone electrolyte. Then capacitors are assembled with tantalum cores dipped with the compounded electrolytes. The best depolariser and its concentration in the whole electrolyte could be selected according to the test results of the capacitance and ESR of the capacitors. The results of our experiment show that depolariser Fe 2(SO 4) 3 used in working electrolyte of 100 V/100 μF wet tantalum capacitors can help to obtain lower ESR and higher capacitance at frequency from 0.1 kHz to 100 kHz.展开更多
This work described the application of wet air oxidation (WAO) to the treatment of desizing wastewater from natural fiber processing. A two-liter autoclave batch reactor was used for the experiments. The range of op...This work described the application of wet air oxidation (WAO) to the treatment of desizing wastewater from natural fiber processing. A two-liter autoclave batch reactor was used for the experiments. The range of operating temperature examined was between 150 and 290℃, and partial pressure of oxygen ranged from 0.375 to 2.25 MPa standardized at 25℃. Variations in Chemical Oxygen Demand(COD) and Total Organic Carbon(TOC) were monitored during each experiment and used to assess the performance of the process. Experimental results showed that WAO can be an efficient method for the treatment of desizing wastewater. Furthermore, Catalytic Wet Air Oxidation (CWAO) was applied to reduce the reaction temperature and pressure in WAO process. A higher COD removal ratio was achieved under more mild reaction condition with the aid of CWAO. A mathematical model was also proposed to simulate the WAO process of desizing wastewater, in which three distinct kinetics steps were considered to describe the degradation of starch. The model simulations were in well agreement with the experimental data.展开更多
文摘Stabilization and volume reduction Of spent radioactive ion-exchange resins (IERs) were studied. Stabilization technology includes volume reduction with wet Chemical oxidation process and immobilization of the residue into cement. Under suitable conditions, the exhaussted radioactive ion-exchange resins were dissolved successfully in a H2,O2-Fe2+/Cu2+ catalytic oxidation system (Fenton reagent). The analytical results indicated that the radioactive nuclides loaded in the resins were concentrated in decomposed solution and solid residues. The process parameters of wet chemical oxidation and solidification were also obtained. The decomposition ratios were 100% and more than 90% for canon and anion IERs respectively. The waste volume was decreased by 40% compared with that of original spent resins.
文摘In this paper, the influence of working electrolyte on high-frequency electrical performance of wet tantalum capacitors is studied. Emphasis is especially put on the study of the contribution of depolariser in reducing Equivalent Series Resistance(ESR). According to the theory of depolarization in electrochemistry and the theory of cathode capacitance of electrolytic capacitor, different kinds of depolarisers are added separately into the foregone electrolyte. Then capacitors are assembled with tantalum cores dipped with the compounded electrolytes. The best depolariser and its concentration in the whole electrolyte could be selected according to the test results of the capacitance and ESR of the capacitors. The results of our experiment show that depolariser Fe 2(SO 4) 3 used in working electrolyte of 100 V/100 μF wet tantalum capacitors can help to obtain lower ESR and higher capacitance at frequency from 0.1 kHz to 100 kHz.
文摘This work described the application of wet air oxidation (WAO) to the treatment of desizing wastewater from natural fiber processing. A two-liter autoclave batch reactor was used for the experiments. The range of operating temperature examined was between 150 and 290℃, and partial pressure of oxygen ranged from 0.375 to 2.25 MPa standardized at 25℃. Variations in Chemical Oxygen Demand(COD) and Total Organic Carbon(TOC) were monitored during each experiment and used to assess the performance of the process. Experimental results showed that WAO can be an efficient method for the treatment of desizing wastewater. Furthermore, Catalytic Wet Air Oxidation (CWAO) was applied to reduce the reaction temperature and pressure in WAO process. A higher COD removal ratio was achieved under more mild reaction condition with the aid of CWAO. A mathematical model was also proposed to simulate the WAO process of desizing wastewater, in which three distinct kinetics steps were considered to describe the degradation of starch. The model simulations were in well agreement with the experimental data.