A field experiment was carried out to explore surface soil mircro-biomass carbon (MBC). The results showed that the difference of soil MBC was significant among three vegetation types in five sample spots in July. T...A field experiment was carried out to explore surface soil mircro-biomass carbon (MBC). The results showed that the difference of soil MBC was significant among three vegetation types in five sample spots in July. The order of surface soil MBC was: Aquaculture pond reed (sample 2)〉 reed of river bank (sample 5)〉 sea- plant(sample 5)〉 river flat(sample 4)〉 The alkaline(sample 1). There is a very sig- nificant correlation among the soil MBC, the water content of soil and the content of organic matter. Among wetland plants, reed is kind of plant content of high ground biomass and below-ground biomass,especially the MBC planted in wetland is high- er, which shows that compared with common plants, reed is more conducive to the accumulation of soil MBC and has an important effect to wetland protecting and re- covery of function of ecosystem.展开更多
Objective: To study the expression of activated epi-dermal growth factor receptor (EGFR) and transcrip-tion factor E2F (E2F) in Condyloma Accuminata(CA)patients. Methods: Immunofluorescent techniques were usedto inves...Objective: To study the expression of activated epi-dermal growth factor receptor (EGFR) and transcrip-tion factor E2F (E2F) in Condyloma Accuminata(CA)patients. Methods: Immunofluorescent techniques were usedto investigate the expression of activated EGFR andE2F in CA patients. Results: The expression of activated EGFR on themembrane of epithelial cells in CA lesions was sig-nificantly greater compared to expression levers inthe control group (P<0.01). Moreover, the co-expres-sion of activated EGFR and E2F was significantly in-creased compared to the control group (P<0.01). Conclusion: Our observations suggest that the in-crease in activated EGFR expression may stimulatehyperplasia in CA patients through the activation oftranscription factor E2F.展开更多
Ten clonal units of Carex pseudocuraica growing in four different microhabitats (perennial flooded ditch water,perennial flooded ditch sediment,seasonal flooded ditch sediment and perennial flooded soil) of the Sanjia...Ten clonal units of Carex pseudocuraica growing in four different microhabitats (perennial flooded ditch water,perennial flooded ditch sediment,seasonal flooded ditch sediment and perennial flooded soil) of the Sanjiang Plain,Northeast China,were collected randomly for phenotypic plasticity analysis.Iron content,chemical and physical properties of substrates and the total Fe of nine plant modules were measured as well.The results show that the performance of the C.pseudocuraica is affected by the microhabitat,with the greatest performance score in perennial flooded ditch water,and the lowest in perennial flooded soil.The biomass allocation indexes indicate that much more mass is allocated to stems and roots to expand colonization area.The distribution of the total Fe in plant modules appears as pyramids from the tip to the root,while marked differences are observed in the distribution proportion of stems,tillering nodes and roots that are allometrically growing.Iron transfer from substrates to the plant is mainly controlled by the substrate type.The differences of iron distribution and transfer in the plant in different microhabitats are attributed to the iron contents of the substrates as well as the phenotypic plasticity of the plant.展开更多
Habitat quality assessments are of great significance for protecting biodiversity.This study analyzes the changing habitat quality of Lashihai watershed based on SPOT satellite images.We extracted the land use data fo...Habitat quality assessments are of great significance for protecting biodiversity.This study analyzes the changing habitat quality of Lashihai watershed based on SPOT satellite images.We extracted the land use data for Lashihai watershed in Yunnan province for the years 2000 and 2015,and then used an INVEST model to evaluate habitat degradation,habitat quality and habitat scarcity in the study area from 2000 to 2015.Spatial statistical methods were used to determine changes to spatial dynamics.Results indicate that the number of areas with habitat degradation was generally small,and that both the number of areas with habitat degradation and the degree of degradation had fallen noticeably during the fifteen-year study period.In general,the quality of habitats was main- tained or improved,while the quality of habitats decreased in only a few areas.The scarcity of habitats for cultivated land had increased,the tension between people and land use was relatively prominent.The reason habitat quality in Lashihai watershed has improved can be attributed to three factors:1)The policy of returning farmland to forests since 2000 has been well implemented and has achieved remarkable results.Loss of forests from logging and deforestation has basically been eliminated,and great progress has been made restoring the ecological environment.2)High background value of quality habitat suitability benefits from the research area's high vegetation coverage.3)The development of the local tourism economy has transformed the area's ecological advantages into an economic bonus,greatly increasing the income level and living standards of residents.At the same time,the ecological resource bonus has increased the enthusiasm of residents for ecological protection and has helped to promote the protection of local eco-systems,both reducing ecological degradation and improving habitat quality.At the same time,increasing conflicts between land and people should be addressed.Support is needed to promote development of the ecological economy while continuously reducing ecological degradation and further increasing residents'income.There must be less reliance on industry and less pressure on both land and people,all the while ensuring that the local economy and ecology can more forward together in a sustainable way.展开更多
By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature br...By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature broadleaf and Korean pine mixed forest (BKPF) and an adjacent white birch forest (WBF) soil under different wetting intensities (55% and 80% WFPS, water-filled pore space) and nitrogen (N) supply (NH4C1 and KNO3, 4.5 g N m-e) conditions. The results showed that for the control, the cumulative carbon dioxide (CO2) flux from WBF soil during the 15-day incubation ranged from 5.44 to 5.82 g CO2-C m-2, which was significantly larger than that from BKPF soil (2.86 to 3.36 g CO2-C m 2). With increasing wetting intensity, the cumulative CO2 flux from the control was decreased for the WBF soil, whereas an increase in the CO2 flux was observed in the BKPF soil (P 〈 0.05). The addition of NH4C1 or KNO3 alone significantly reduced the cumulative CO2 fluxes by 9.2%-21.6 % from the two soils, especially from WBF soil at low wetting intensity. The addition of glucose alone significantly increased soil heterotrophic respiration, microbial biomass C (MBC), and microbial metabolic quotient. The glucose-induced cumulative CO2 fluxes and soil MBC during the incubation ranged from 8.7 to 11.7 g CO2-C m-2 and from 7.4 to 23.9 g C m-2, which are larger than the dose of added C. Hence, the addition of external carbon can increase the decomposition of soil native organic C. The glucose-induced average and maximum rates of CO2 fluxes during the incubation were significantly in- fluenced by wetting intensity (WI) and vegetation type (VT), and by WIxVT, NH4ClxVT and WIxVTxNH4C1 (P〈0.05). The addition of NH4C1, instead of KNO3, significantly decreased the glucose-induced MBC of WBF soil (P〈0.05), whereas adding NH4C1 and KNO3 both significantly increased the glucose-induced MBC of BKPF soil at high moisture (P〈0.05). According to the differences in soil labile C pools, MBC and CO2 fluxes in the presence and absence of glucose, it can be concluded that the stimulating effects of glucose on soil heterotrophic respiration and MBC under temperate forests were dependent on vegetation type, soil moisture, and amount and type of the N added.展开更多
Water-sediment regulation of the Yellow River is to regulate and control the flow and sediment transport relationship of the lower reaches through reservoirs on the main streams and tributaries to create balance betwe...Water-sediment regulation of the Yellow River is to regulate and control the flow and sediment transport relationship of the lower reaches through reservoirs on the main streams and tributaries to create balance between water and sediment so that sediment transport capacity of the downstream channels can be maximized,shrinking of channels be contained,and medium flood channel be restored and maintained.Many years' research by the Yellow River Conservancy Commission(YRCC) reveals the water and sediment transport relationship that will prevent sedimentation at the downstream river channels.Based on this relationship and coming sediment and water conditions in the Yellow River basin,the YRCC,with maximized use of reservoirs on the main streams and tributaries,has developed three models of water-sediment regulation:single Xiaolangdi Reservoir-dominated regulation,space scale water-sediment match,and mainstream reservoirs joint operation.Ten water-sediment regulations based on these three models have resulted in an average drop of 1.5 m in the main channel of the downstream 800 km river and an increase of carrying capacity from 1800 to 4000 m3/s.Besides,the wetland ecosystems of estuarine delta has also been improved and restored significantly.展开更多
基金Supported by National Natural Science Foundation of China(41101080)Provincial Natural Science Foundation of Shandong(ZR2011QD009)+2 种基金Provincial College and University Science and Technology Plan of Shandong(J12LC04)Qingdao Public Domain of Science and Technology Support Project(12-1-3-71-nsh)Excellent Graduate Papers of Qingdao University Engagement Foundation(2014)~~
文摘A field experiment was carried out to explore surface soil mircro-biomass carbon (MBC). The results showed that the difference of soil MBC was significant among three vegetation types in five sample spots in July. The order of surface soil MBC was: Aquaculture pond reed (sample 2)〉 reed of river bank (sample 5)〉 sea- plant(sample 5)〉 river flat(sample 4)〉 The alkaline(sample 1). There is a very sig- nificant correlation among the soil MBC, the water content of soil and the content of organic matter. Among wetland plants, reed is kind of plant content of high ground biomass and below-ground biomass,especially the MBC planted in wetland is high- er, which shows that compared with common plants, reed is more conducive to the accumulation of soil MBC and has an important effect to wetland protecting and re- covery of function of ecosystem.
文摘Objective: To study the expression of activated epi-dermal growth factor receptor (EGFR) and transcrip-tion factor E2F (E2F) in Condyloma Accuminata(CA)patients. Methods: Immunofluorescent techniques were usedto investigate the expression of activated EGFR andE2F in CA patients. Results: The expression of activated EGFR on themembrane of epithelial cells in CA lesions was sig-nificantly greater compared to expression levers inthe control group (P<0.01). Moreover, the co-expres-sion of activated EGFR and E2F was significantly in-creased compared to the control group (P<0.01). Conclusion: Our observations suggest that the in-crease in activated EGFR expression may stimulatehyperplasia in CA patients through the activation oftranscription factor E2F.
基金Under the auspices of National Natural Science Foundation of China (No.40901051,40830535,40871049)Discovery Research Project of Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences (No.KZCX3-SW-NA09-02)
文摘Ten clonal units of Carex pseudocuraica growing in four different microhabitats (perennial flooded ditch water,perennial flooded ditch sediment,seasonal flooded ditch sediment and perennial flooded soil) of the Sanjiang Plain,Northeast China,were collected randomly for phenotypic plasticity analysis.Iron content,chemical and physical properties of substrates and the total Fe of nine plant modules were measured as well.The results show that the performance of the C.pseudocuraica is affected by the microhabitat,with the greatest performance score in perennial flooded ditch water,and the lowest in perennial flooded soil.The biomass allocation indexes indicate that much more mass is allocated to stems and roots to expand colonization area.The distribution of the total Fe in plant modules appears as pyramids from the tip to the root,while marked differences are observed in the distribution proportion of stems,tillering nodes and roots that are allometrically growing.Iron transfer from substrates to the plant is mainly controlled by the substrate type.The differences of iron distribution and transfer in the plant in different microhabitats are attributed to the iron contents of the substrates as well as the phenotypic plasticity of the plant.
基金Supported by fund for building world-class universities(disciplines) of Renmin University of China(2018)
文摘Habitat quality assessments are of great significance for protecting biodiversity.This study analyzes the changing habitat quality of Lashihai watershed based on SPOT satellite images.We extracted the land use data for Lashihai watershed in Yunnan province for the years 2000 and 2015,and then used an INVEST model to evaluate habitat degradation,habitat quality and habitat scarcity in the study area from 2000 to 2015.Spatial statistical methods were used to determine changes to spatial dynamics.Results indicate that the number of areas with habitat degradation was generally small,and that both the number of areas with habitat degradation and the degree of degradation had fallen noticeably during the fifteen-year study period.In general,the quality of habitats was main- tained or improved,while the quality of habitats decreased in only a few areas.The scarcity of habitats for cultivated land had increased,the tension between people and land use was relatively prominent.The reason habitat quality in Lashihai watershed has improved can be attributed to three factors:1)The policy of returning farmland to forests since 2000 has been well implemented and has achieved remarkable results.Loss of forests from logging and deforestation has basically been eliminated,and great progress has been made restoring the ecological environment.2)High background value of quality habitat suitability benefits from the research area's high vegetation coverage.3)The development of the local tourism economy has transformed the area's ecological advantages into an economic bonus,greatly increasing the income level and living standards of residents.At the same time,the ecological resource bonus has increased the enthusiasm of residents for ecological protection and has helped to promote the protection of local eco-systems,both reducing ecological degradation and improving habitat quality.At the same time,increasing conflicts between land and people should be addressed.Support is needed to promote development of the ecological economy while continuously reducing ecological degradation and further increasing residents'income.There must be less reliance on industry and less pressure on both land and people,all the while ensuring that the local economy and ecology can more forward together in a sustainable way.
基金financially supported jointly by the National Basic Research Program of China(Grant No.2010CB950602)the National Natural Science Foundation of China(Grant Nos.41175133,21228701,41275166,and 41321064)
文摘By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature broadleaf and Korean pine mixed forest (BKPF) and an adjacent white birch forest (WBF) soil under different wetting intensities (55% and 80% WFPS, water-filled pore space) and nitrogen (N) supply (NH4C1 and KNO3, 4.5 g N m-e) conditions. The results showed that for the control, the cumulative carbon dioxide (CO2) flux from WBF soil during the 15-day incubation ranged from 5.44 to 5.82 g CO2-C m-2, which was significantly larger than that from BKPF soil (2.86 to 3.36 g CO2-C m 2). With increasing wetting intensity, the cumulative CO2 flux from the control was decreased for the WBF soil, whereas an increase in the CO2 flux was observed in the BKPF soil (P 〈 0.05). The addition of NH4C1 or KNO3 alone significantly reduced the cumulative CO2 fluxes by 9.2%-21.6 % from the two soils, especially from WBF soil at low wetting intensity. The addition of glucose alone significantly increased soil heterotrophic respiration, microbial biomass C (MBC), and microbial metabolic quotient. The glucose-induced cumulative CO2 fluxes and soil MBC during the incubation ranged from 8.7 to 11.7 g CO2-C m-2 and from 7.4 to 23.9 g C m-2, which are larger than the dose of added C. Hence, the addition of external carbon can increase the decomposition of soil native organic C. The glucose-induced average and maximum rates of CO2 fluxes during the incubation were significantly in- fluenced by wetting intensity (WI) and vegetation type (VT), and by WIxVT, NH4ClxVT and WIxVTxNH4C1 (P〈0.05). The addition of NH4C1, instead of KNO3, significantly decreased the glucose-induced MBC of WBF soil (P〈0.05), whereas adding NH4C1 and KNO3 both significantly increased the glucose-induced MBC of BKPF soil at high moisture (P〈0.05). According to the differences in soil labile C pools, MBC and CO2 fluxes in the presence and absence of glucose, it can be concluded that the stimulating effects of glucose on soil heterotrophic respiration and MBC under temperate forests were dependent on vegetation type, soil moisture, and amount and type of the N added.
文摘Water-sediment regulation of the Yellow River is to regulate and control the flow and sediment transport relationship of the lower reaches through reservoirs on the main streams and tributaries to create balance between water and sediment so that sediment transport capacity of the downstream channels can be maximized,shrinking of channels be contained,and medium flood channel be restored and maintained.Many years' research by the Yellow River Conservancy Commission(YRCC) reveals the water and sediment transport relationship that will prevent sedimentation at the downstream river channels.Based on this relationship and coming sediment and water conditions in the Yellow River basin,the YRCC,with maximized use of reservoirs on the main streams and tributaries,has developed three models of water-sediment regulation:single Xiaolangdi Reservoir-dominated regulation,space scale water-sediment match,and mainstream reservoirs joint operation.Ten water-sediment regulations based on these three models have resulted in an average drop of 1.5 m in the main channel of the downstream 800 km river and an increase of carrying capacity from 1800 to 4000 m3/s.Besides,the wetland ecosystems of estuarine delta has also been improved and restored significantly.