Damp-heat karst mountainous areas are unique areas in terms of socialeconomic development, resource endowment and eco-environment in China, where natural resources are abundant,unique and diverse. However, fragile eco...Damp-heat karst mountainous areas are unique areas in terms of socialeconomic development, resource endowment and eco-environment in China, where natural resources are abundant,unique and diverse. However, fragile eco-environment, undeveloped economy and culture, and conflict of human and environment should not be ignored. In the research, a framework of integration of resource-development and environment-protection in damp-heat karst was designed on basis of resource and environment integration, which was applied to Daxin County in Guangxi Province. Furthermore, some integration models were proposed, including integration of development of characteristic agricultural resources and protection of eco-environment, integration of development of manganese ore resources and protection of eco-environment, integration of development of tourism resources and protection of ecoenvironment and integration of development of clean energy and protection of eco-environment.展开更多
Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including e...Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including ergonomics,physiology and heat transfer is urgently required for the reduction of heat strain.The aim of this paper was to study the relationship among clothing thermal properties,physiological responses and environmental conditions.Three kinds of CPC were selected.Eight participants wore CPC and walked(4 km/h,two slopes with 5%and 10%)on a treadmill in an environment with(35±0.5)℃ and RH of(60±5)%.Core temperature,mean skin temperature,heart rate,heat storage and tolerance time were recorded and analyzed.Physiological responses were significantly affected by the clothing thermal properties and activity intensity in hot-humid environment.The obtained results can help further development of heat strain model.New materials with lower evaporative resistance and less weight are necessary to release the heat strain in hot-humid environments.展开更多
The paper discusses the results of a field study carried out in four cities in Mexico: Hermosillo, Mexicali, Merida and Colima, during the warmest seasons of 2006-2007. The survey is according to the adaptive approac...The paper discusses the results of a field study carried out in four cities in Mexico: Hermosillo, Mexicali, Merida and Colima, during the warmest seasons of 2006-2007. The survey is according to the adaptive approach of thermal comfort. The cities' climates are hot dry, hot sub-humid and hot humid. The respondents were inhabitants of low cost housings without air conditioning. The research was performed during warm seasons and according to ISO 10551. The measurements were processed by the common method of linear regression and also by alternative methods, useful for asymmetric climates. Individuals declared comfort at very high temperatures, either high or low humidity, therefore, the resulting neutral temperatures are higher than 30 ℃, except in Colima (28.8 ℃). The upper limits of comfort ranges achieved temperatures up to 35 ℃. The results suggest how great is the capacity of humans to adapt to conditions as extreme as those measured in the study.展开更多
Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment s...Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.展开更多
In order to improve the thermal environment of high-temperature heading face,moisture content of supply air is reduced by dehumidification, and the relative humidity ofenvironment air of the heading face is also decre...In order to improve the thermal environment of high-temperature heading face,moisture content of supply air is reduced by dehumidification, and the relative humidity ofenvironment air of the heading face is also decreased.First, according to the coefficient ofperformance of dehumidifier, the capacity of dehumidification was calculated.Second, inthe engineering example of the heading face, quantitative changes of WBGT (Wet BulbGlobe Temperature) were compared between with dehumidification and without dehumidification.Based on WBGT standards, the thermal comfort of high-temperature environmentof heading face was evaluated between with dehumidification and without handling.Reducingthe relative humidity of airflow through dehumidification, the thermal comfort of ahigh-temperature environment of heading face can improve greatly.Even if dry bulb temperatureof airflow is not decreased, the thermal comfort of heading face environment isalso improved to some extent.展开更多
The suitability of constructed wetland (CW) in were developed. The first experiment focused on zinc and treating acid mine drainage (AMD) was investigated. Two experiments nutrients removals. Four units of horizon...The suitability of constructed wetland (CW) in were developed. The first experiment focused on zinc and treating acid mine drainage (AMD) was investigated. Two experiments nutrients removals. Four units of horizontal subsurface flow CWs were used, two cells planted with Phragmites mauritianus, one cell with Typha domingensis and one cell unplanted (control cell). Artificial high concentrated AMD was used. It was mixed with domestic wastewater from the anaerobic waste stabilization pond (WSP) to ensure nutrient supply to the plants in the CW cells. The second experiment tested the tolerance of locally available macrophytes to the harsh acidic environment, while providing required condition for treatment of AMD. To accomplish this, another set of four CW cells planted with different types of macrophytes, namely Typha domingensis, Phragmites mauritianus, Vetiver grass and Papyrus, were used thereby subjecting them to varying acid concentration ofpH of 3.5, 3.0, 2.9 and 2.7. The study demonstrated adequate zinc removal from AMD which is related to sulphide precipitation. A CW cell planted with Typha domingensis showed higher zinc removal (80%-84%) compared to other cells. Different macrophytes showed different nutrient removal efficiency, but overall, for the type of wetland plants studied, phosphorous removal increased with decreasing pH while nitrogen removal behaved quite opposite. On the other hand, Typha domingensis, Phragmites mauritianus and Papyrus were observed to tolerate high acidity as low pH as 2.7 and therefore are suitable macrophytes for AMD treatment with CW.展开更多
Excellent thermal insulating materials are highly demanded in various applications including buildings, aerospace and sport equipment. However, in practical applications,the performance of thermal insulating materials...Excellent thermal insulating materials are highly demanded in various applications including buildings, aerospace and sport equipment. However, in practical applications,the performance of thermal insulating materials usually deteriorates under diverse temperature and humidity conditions.Therefore, it is highly essential to construct a bulk material that exhibits outstanding thermal insulation performance under extremely humid and hot environment. In this work, we have conceived a green and effective strategy to fabricate a superhydrophobic and compressible polyvinylidene fluoride/polyimide(PVDF/PI) nanofiber composite aerogel via electrospinning and freeze-drying technique. Interestingly, the PVDF nanofibers and PI nanofibers function as the hydrophobic fibrous framework and mechanical support skeleton,respectively, forming a robust three-dimensional framework with good mechanical flexibility. The PVDF/PI aerogel possesses outstanding superhydrophobic feature(water contact angle of 152°) and low thermal conductivity(31.0 m W m^(-1)K^(-1))at room temperature. Significantly, even at 100% relative humidity(80℃), the PVDF/PI aerogel still exhibits a low thermal conductivity of only 48.6 m W m^(-1)K^(-1), which outperforms the majority of commercial thermal insulating materials. Therefore, the novel PVDF/PI aerogel is promising as an excellent thermal insulating material for the applications in high-temperature and humid environment.展开更多
Soil quality is a major concern in the management of urban parks. In this study, the soils at 0–3, 3–13, and 13–23 cm depths were sampled from six urban parks, differing in reconstruction intensity(mainly changes m...Soil quality is a major concern in the management of urban parks. In this study, the soils at 0–3, 3–13, and 13–23 cm depths were sampled from six urban parks, differing in reconstruction intensity(mainly changes made during conversion of natural forests into parklands), in the Pearl River Delta, China to determine how reconstruction intensity influenced the extent of acidification and heavy metal levels in the soils of urban parks in a humid subtropical environment. High reconstruction intensity(HRI) was practiced in three parks and low reconstruction intensity(LRI) in three other parks. The LRI soils were strongly to extremely acidic(with low exchangeable Ca, Mg, and K concentrations) while the HRI soils were much less acidic. Both total and extractable concentrations of soil heavy metals were related to the specific management practices and age of the park, but did not differ significantly between LRI and HRI parks or among soil depths. Soil p H was significantly related to soil exchangeable cation concentrations and base saturation but was weakly related or unrelated to soil heavy metal levels. Our results suggest that high intensity but not low intensity reconstruction significantly reduces the extent of soil acidification in the urban parks in a humid subtropical environment.展开更多
In recent years,natural fiber reinforced composites have been widely applied to various industrial products for their excellent environmental-friendly performance.It is essential to understand the mechanical propertie...In recent years,natural fiber reinforced composites have been widely applied to various industrial products for their excellent environmental-friendly performance.It is essential to understand the mechanical properties of natural fiber reinforced composites under their in-service environment.Compared with synthetic fibers,the hydrophilicity of natural fibers could result in a much larger quantity of water absorption from the moisture atmosphere,which would have adverse consequences for the durability of natural fiber reinforced composites[1].The environmental temperature would affect the展开更多
基金Supported by National Natural Science Foundation of China(40961004,40761027)Guangxi Natural Science Foundation(2011jjA50016)+1 种基金Guangxi Philosophy and Social Science Research Project of 11th Five-Year Plan(06FJY023)Key Laboratory Funds of Ministry of Education(B3G1110)~~
文摘Damp-heat karst mountainous areas are unique areas in terms of socialeconomic development, resource endowment and eco-environment in China, where natural resources are abundant,unique and diverse. However, fragile eco-environment, undeveloped economy and culture, and conflict of human and environment should not be ignored. In the research, a framework of integration of resource-development and environment-protection in damp-heat karst was designed on basis of resource and environment integration, which was applied to Daxin County in Guangxi Province. Furthermore, some integration models were proposed, including integration of development of characteristic agricultural resources and protection of eco-environment, integration of development of manganese ore resources and protection of eco-environment, integration of development of tourism resources and protection of ecoenvironment and integration of development of clean energy and protection of eco-environment.
文摘Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including ergonomics,physiology and heat transfer is urgently required for the reduction of heat strain.The aim of this paper was to study the relationship among clothing thermal properties,physiological responses and environmental conditions.Three kinds of CPC were selected.Eight participants wore CPC and walked(4 km/h,two slopes with 5%and 10%)on a treadmill in an environment with(35±0.5)℃ and RH of(60±5)%.Core temperature,mean skin temperature,heart rate,heat storage and tolerance time were recorded and analyzed.Physiological responses were significantly affected by the clothing thermal properties and activity intensity in hot-humid environment.The obtained results can help further development of heat strain model.New materials with lower evaporative resistance and less weight are necessary to release the heat strain in hot-humid environments.
文摘The paper discusses the results of a field study carried out in four cities in Mexico: Hermosillo, Mexicali, Merida and Colima, during the warmest seasons of 2006-2007. The survey is according to the adaptive approach of thermal comfort. The cities' climates are hot dry, hot sub-humid and hot humid. The respondents were inhabitants of low cost housings without air conditioning. The research was performed during warm seasons and according to ISO 10551. The measurements were processed by the common method of linear regression and also by alternative methods, useful for asymmetric climates. Individuals declared comfort at very high temperatures, either high or low humidity, therefore, the resulting neutral temperatures are higher than 30 ℃, except in Colima (28.8 ℃). The upper limits of comfort ranges achieved temperatures up to 35 ℃. The results suggest how great is the capacity of humans to adapt to conditions as extreme as those measured in the study.
基金supported by the Ministry of Science and Technology of China(2006BAJ04A01 and 2006BAJ03A04-01)
文摘Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.
基金Supported by Hunan Province Science and Technology(2007FJ1012)the Scientific Research Fund of Hunan Provincial Education Department(09CY014)Doctoral Fund of HNUST
文摘In order to improve the thermal environment of high-temperature heading face,moisture content of supply air is reduced by dehumidification, and the relative humidity ofenvironment air of the heading face is also decreased.First, according to the coefficient ofperformance of dehumidifier, the capacity of dehumidification was calculated.Second, inthe engineering example of the heading face, quantitative changes of WBGT (Wet BulbGlobe Temperature) were compared between with dehumidification and without dehumidification.Based on WBGT standards, the thermal comfort of high-temperature environmentof heading face was evaluated between with dehumidification and without handling.Reducingthe relative humidity of airflow through dehumidification, the thermal comfort of ahigh-temperature environment of heading face can improve greatly.Even if dry bulb temperatureof airflow is not decreased, the thermal comfort of heading face environment isalso improved to some extent.
文摘The suitability of constructed wetland (CW) in were developed. The first experiment focused on zinc and treating acid mine drainage (AMD) was investigated. Two experiments nutrients removals. Four units of horizontal subsurface flow CWs were used, two cells planted with Phragmites mauritianus, one cell with Typha domingensis and one cell unplanted (control cell). Artificial high concentrated AMD was used. It was mixed with domestic wastewater from the anaerobic waste stabilization pond (WSP) to ensure nutrient supply to the plants in the CW cells. The second experiment tested the tolerance of locally available macrophytes to the harsh acidic environment, while providing required condition for treatment of AMD. To accomplish this, another set of four CW cells planted with different types of macrophytes, namely Typha domingensis, Phragmites mauritianus, Vetiver grass and Papyrus, were used thereby subjecting them to varying acid concentration ofpH of 3.5, 3.0, 2.9 and 2.7. The study demonstrated adequate zinc removal from AMD which is related to sulphide precipitation. A CW cell planted with Typha domingensis showed higher zinc removal (80%-84%) compared to other cells. Different macrophytes showed different nutrient removal efficiency, but overall, for the type of wetland plants studied, phosphorous removal increased with decreasing pH while nitrogen removal behaved quite opposite. On the other hand, Typha domingensis, Phragmites mauritianus and Papyrus were observed to tolerate high acidity as low pH as 2.7 and therefore are suitable macrophytes for AMD treatment with CW.
基金the financial support from the National Natural Science Foundation of China (21674019 and 21704014)the Fundamental Research Funds for the Central Universities(2232019A3-03)+3 种基金the Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2019006)Shanghai Sailing Program(17YF1400200)Shanghai Municipal Education Commission (17CG33)the Ministry of Education of the People’s Republic of China(6141A0202202)。
文摘Excellent thermal insulating materials are highly demanded in various applications including buildings, aerospace and sport equipment. However, in practical applications,the performance of thermal insulating materials usually deteriorates under diverse temperature and humidity conditions.Therefore, it is highly essential to construct a bulk material that exhibits outstanding thermal insulation performance under extremely humid and hot environment. In this work, we have conceived a green and effective strategy to fabricate a superhydrophobic and compressible polyvinylidene fluoride/polyimide(PVDF/PI) nanofiber composite aerogel via electrospinning and freeze-drying technique. Interestingly, the PVDF nanofibers and PI nanofibers function as the hydrophobic fibrous framework and mechanical support skeleton,respectively, forming a robust three-dimensional framework with good mechanical flexibility. The PVDF/PI aerogel possesses outstanding superhydrophobic feature(water contact angle of 152°) and low thermal conductivity(31.0 m W m^(-1)K^(-1))at room temperature. Significantly, even at 100% relative humidity(80℃), the PVDF/PI aerogel still exhibits a low thermal conductivity of only 48.6 m W m^(-1)K^(-1), which outperforms the majority of commercial thermal insulating materials. Therefore, the novel PVDF/PI aerogel is promising as an excellent thermal insulating material for the applications in high-temperature and humid environment.
基金supported by the Agricultural and Forestry Promotion Fund of Nanhai Agro-forestry Extension Centre,Guangdong Province,China(No.08-4101001)the Guangdong Provincial Natural Science Foundation of China(No.8151065005000016)the Research Fund of South China Botanical Garden,China(No.201307)
文摘Soil quality is a major concern in the management of urban parks. In this study, the soils at 0–3, 3–13, and 13–23 cm depths were sampled from six urban parks, differing in reconstruction intensity(mainly changes made during conversion of natural forests into parklands), in the Pearl River Delta, China to determine how reconstruction intensity influenced the extent of acidification and heavy metal levels in the soils of urban parks in a humid subtropical environment. High reconstruction intensity(HRI) was practiced in three parks and low reconstruction intensity(LRI) in three other parks. The LRI soils were strongly to extremely acidic(with low exchangeable Ca, Mg, and K concentrations) while the HRI soils were much less acidic. Both total and extractable concentrations of soil heavy metals were related to the specific management practices and age of the park, but did not differ significantly between LRI and HRI parks or among soil depths. Soil p H was significantly related to soil exchangeable cation concentrations and base saturation but was weakly related or unrelated to soil heavy metal levels. Our results suggest that high intensity but not low intensity reconstruction significantly reduces the extent of soil acidification in the urban parks in a humid subtropical environment.
基金supported by the Shenzhen Municipal Government through the Fundamental Research Project(Grant No.JCYJ20170307151049286)the National Natural Science Foundation of China(Grant No.11572227)
文摘In recent years,natural fiber reinforced composites have been widely applied to various industrial products for their excellent environmental-friendly performance.It is essential to understand the mechanical properties of natural fiber reinforced composites under their in-service environment.Compared with synthetic fibers,the hydrophilicity of natural fibers could result in a much larger quantity of water absorption from the moisture atmosphere,which would have adverse consequences for the durability of natural fiber reinforced composites[1].The environmental temperature would affect the