Over 240 debris flows occurred in hill-slopes, gullies ( indicated those with single-channel) and watersheds (indicated those with tributaries and channels) on July 10th 2013 in the Wenchuan county, and caused 29 ...Over 240 debris flows occurred in hill-slopes, gullies ( indicated those with single-channel) and watersheds (indicated those with tributaries and channels) on July 10th 2013 in the Wenchuan county, and caused 29 casualties and about 633×10^6 USD losses. This work aimed to analyze characteristics, hazards and causes of these events and explore mitigating measures based on field investigation and remote sensing images interpretation. The debris flows contained clay content of 0.1%~3.56%, having densities of 1.72-2.14 t/m^3, velocities of 5.0-m.7 m/s, discharges of 335-2353 m^3/s and sediment yields of 0.10-1.26×10^6 m^3, and also numerously occurred in large watersheds with the area over lo km^2. Large debris flows formed 3 hazard-chains in slopes, gullies, watersheds and rivers, which all evolved in dammed lakes and outburst flood, and 26 dammed lakes and lO newly ones were generated along the rivers of Min and Yuzi. The remarkable spatial difference of loose solid materials accumulation and intense rainfall, with the cumulative of about or more than 150 mm and the hourly of over 16mm, caused debris flows in the sections from Yingxiu to Miansi and Gengda. The damages on buildings, reconstructions, highways,factories and hydro power station originated from the impacting, scouring, burying of debris flows, the submerging of dammed lake and the scouring of outburst flood, and the huge losses came from the ruinous destructions of control engineering works of debris flows as well as the irrational location and low- resistant capabilities of reconstructions. For hazards mitigating of debris flows in long term, the feasible measures for short term, including risk-reassessing of foregone and potential hazard sites, regional alarming system establishing and integrated control in disastrous sites, and middle-long term, including improving reconstruction standard, rationally disposing river channel bed rise and selecting appropriate reconstruction time and plans, were strongly suggested.展开更多
With the global warming,the disasters of Glacier Lake Outburst Flood(GLOF) have taken place frequently in Tibet in recent years and attracted more and more attention.A systematic survey was conducted on the 19 GLOFs i...With the global warming,the disasters of Glacier Lake Outburst Flood(GLOF) have taken place frequently in Tibet in recent years and attracted more and more attention.A systematic survey was conducted on the 19 GLOFs in Tibet to study their two main mechanisms.Investigations indicated that all the events occurred in end-moraine lakes,and the outburst occurred partially and instantly.And the breach had the shape of an arc or a trapezoid in overflow outburst and its top width was 3-5 times more than the height.The two main mechanisms of GLOFs in Tibetan end-moraine Lake were overflow and piping,and the overflow mechanism caused by iceberg collapse was dominated in most cases.A formula was proposed to calculate the critical thickness of iceberg tongue that determines the collapse.Granular analysis of the moraine materials revealed that seepage deformation is crucial in the outburst process.Finally,we conducted a case study of the Guangxiecuo Lake to show its possible process of outburst and estimated the peak discharge of the resulted flood.展开更多
基金supported by the Key Program of National Natural Science Found of China (Grant No. 41030742)the Program of National Natural Science Found of China (Grant No. 41171012)
文摘Over 240 debris flows occurred in hill-slopes, gullies ( indicated those with single-channel) and watersheds (indicated those with tributaries and channels) on July 10th 2013 in the Wenchuan county, and caused 29 casualties and about 633×10^6 USD losses. This work aimed to analyze characteristics, hazards and causes of these events and explore mitigating measures based on field investigation and remote sensing images interpretation. The debris flows contained clay content of 0.1%~3.56%, having densities of 1.72-2.14 t/m^3, velocities of 5.0-m.7 m/s, discharges of 335-2353 m^3/s and sediment yields of 0.10-1.26×10^6 m^3, and also numerously occurred in large watersheds with the area over lo km^2. Large debris flows formed 3 hazard-chains in slopes, gullies, watersheds and rivers, which all evolved in dammed lakes and outburst flood, and 26 dammed lakes and lO newly ones were generated along the rivers of Min and Yuzi. The remarkable spatial difference of loose solid materials accumulation and intense rainfall, with the cumulative of about or more than 150 mm and the hourly of over 16mm, caused debris flows in the sections from Yingxiu to Miansi and Gengda. The damages on buildings, reconstructions, highways,factories and hydro power station originated from the impacting, scouring, burying of debris flows, the submerging of dammed lake and the scouring of outburst flood, and the huge losses came from the ruinous destructions of control engineering works of debris flows as well as the irrational location and low- resistant capabilities of reconstructions. For hazards mitigating of debris flows in long term, the feasible measures for short term, including risk-reassessing of foregone and potential hazard sites, regional alarming system establishing and integrated control in disastrous sites, and middle-long term, including improving reconstruction standard, rationally disposing river channel bed rise and selecting appropriate reconstruction time and plans, were strongly suggested.
基金supported by the National Natural Science Foundation of China (Grant No.41201010)the Technology Project of the Ministry of Transport(Grant No.201231879210)+2 种基金the Directional Projectof IMHE (No.SDS-135-1202-02)Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No.SKLGP2010K003)Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research (Grant NO.IWHR-SKL-201209)
文摘With the global warming,the disasters of Glacier Lake Outburst Flood(GLOF) have taken place frequently in Tibet in recent years and attracted more and more attention.A systematic survey was conducted on the 19 GLOFs in Tibet to study their two main mechanisms.Investigations indicated that all the events occurred in end-moraine lakes,and the outburst occurred partially and instantly.And the breach had the shape of an arc or a trapezoid in overflow outburst and its top width was 3-5 times more than the height.The two main mechanisms of GLOFs in Tibetan end-moraine Lake were overflow and piping,and the overflow mechanism caused by iceberg collapse was dominated in most cases.A formula was proposed to calculate the critical thickness of iceberg tongue that determines the collapse.Granular analysis of the moraine materials revealed that seepage deformation is crucial in the outburst process.Finally,we conducted a case study of the Guangxiecuo Lake to show its possible process of outburst and estimated the peak discharge of the resulted flood.