A novel p-channel selected n-channel divided bit-line NOR(PNOR) flash memory,which features low programming current,low power,high access current,and slight bit-line disturbance,is proposed.By using the source induced...A novel p-channel selected n-channel divided bit-line NOR(PNOR) flash memory,which features low programming current,low power,high access current,and slight bit-line disturbance,is proposed.By using the source induced band-to-band hot electron injection (SIBE) to perform programming and dividing the bit-line to the sub-bit-lines,the programming current and power can be reduced to 3.5μA and 16.5μW with the sub-bit-line width equaling to 128,and a read current of 60μA is obtained.Furthermore,the bit-line disturbance is also significantly alleviated.展开更多
A new configuration for delay cells used in voltage controlled oscillators is presented. A jitter comparison between the source-coupled differential delay cell and the proposed CMOS inverter based delay cell is given....A new configuration for delay cells used in voltage controlled oscillators is presented. A jitter comparison between the source-coupled differential delay cell and the proposed CMOS inverter based delay cell is given. A new method to optimize loop parameters based on low-jitter in PLL is also introduced. A low-jitter 1.25GHz Serdes is implemented in a 0.35μm standard 2P3M CMOS process. The result shows that the RJ (random jitter) RMS of 1.25GHz data rate series output is 2. 3ps (0. 0015UI) and RJ (1 sigma) is 0. 0035UI. A phase noise measurement shows - 120dBc/Hz@100kHz at 1111100000 clock-pattern data out.展开更多
This is an extended version of the same titled paper presented at the 21st CIRED. It discusses a new technique for identification and location of defective insulator strings in power lines based on the analysis of hig...This is an extended version of the same titled paper presented at the 21st CIRED. It discusses a new technique for identification and location of defective insulator strings in power lines based on the analysis of high frequency signals generated by corona effect. Damaged insulator strings may lead to loss of insulation and hence to the corona effect, in other words, to partial discharges. These partial discharges can be detected by a system composed of a capacitive coupling device (region between the phase and the metal body of a current transformer), a data acquisition board and a computer. Analyzing the waveform of these partial discharges through a neural network based software, it is possible to identify and locate the defective insulator string. This paper discusses how this software analysis works and why its technique is suitable for this application. Hence the results of key tests performed along the development are discussed, pointing out the main factors that affect their performance.展开更多
The paper presents results from a study of a series-connected single-phase APF (active power filter) with a control system based on hysteresis control, both with and without limitation of the maximum switching frequ...The paper presents results from a study of a series-connected single-phase APF (active power filter) with a control system based on hysteresis control, both with and without limitation of the maximum switching frequency. The general purpose of the series APF is to eliminate the low order harmonics of the source (grid) voltage. The filter operation at limited and unlimited maximum switching frequency is explained and it is described using building blocks and time diagrams illustrating the tracking down of the reference curve. Waveforms from the computer simulation and waveforms from the experimental tests of the filter are presented also for the two situations. Operations at limited and unlimited maximum switching frequency are compared regarding the quality of the voltage across the load, the complexity of the implementation of the control system, and the electromagnetic compatibility. The investigation proved capability of the series APF to achieve its general purpose using the hysteresis control methods studied (limited and unlimited switching frequency).展开更多
This work aims to control pulsed power for biomedical fields, which demands sensitive parameters. The pulsed power consists of a voltage rise time of less than 50 ns and charging energy to 1.0 J/pulse; also, the pulse...This work aims to control pulsed power for biomedical fields, which demands sensitive parameters. The pulsed power consists of a voltage rise time of less than 50 ns and charging energy to 1.0 J/pulse; also, the pulse control area includes pulse interval pulse shot number, output voltage. To achieve this system, a pulsed power system exists including software running on PC, universal serial bus (UgB~ for connection, and FPGA controller. Using the software for complex control of pulsed power will enable expansion into various fields with easy operation.展开更多
This paper presents a power system architecture where SIPO (series-input parallel-output) converters are controlled to achieve uniform inpt voltages across their respective series-connected power sources while also ...This paper presents a power system architecture where SIPO (series-input parallel-output) converters are controlled to achieve uniform inpt voltages across their respective series-connected power sources while also tracking the system optimum power point; the system optimum power point is the maximum power drawn from the series-connected power sources while their voltages are kept uniformly distributed. With proper uniform input voltage distribution control, near maximum use of the power sources is achieved by employing only one MPT (maximum power tracking) controller instead of multiple MPT controllers dedicated for their respective power sources. Provided that the maximum power point voltages of the input power sources are similar, the resulting system architecture offers near-maximum power transfer with a lower parts count. A feasibility study using computer simulation has successfully validated two SIPO power architectures and their control concepts for optimum power transfer.展开更多
In this paper, a microring resonator(MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus wav...In this paper, a microring resonator(MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus waveguide which is used as propagation and oscillation medium. The scattering matrix method is employed to determine the output signal intensity which acts as the input source between two-level Rabi oscillation states, where the increase of Rabi oscillation frequency with time is obtained at the resonant state. The population probability of the excited state is higher and unstable at the optical resonant state due to the nonlinear spontaneous emission process. The enhanced spontaneous emission can be managed by the atom(photon) excitation, which can be useful for atomic related sensors and single-photon source applications.展开更多
文摘A novel p-channel selected n-channel divided bit-line NOR(PNOR) flash memory,which features low programming current,low power,high access current,and slight bit-line disturbance,is proposed.By using the source induced band-to-band hot electron injection (SIBE) to perform programming and dividing the bit-line to the sub-bit-lines,the programming current and power can be reduced to 3.5μA and 16.5μW with the sub-bit-line width equaling to 128,and a read current of 60μA is obtained.Furthermore,the bit-line disturbance is also significantly alleviated.
文摘A new configuration for delay cells used in voltage controlled oscillators is presented. A jitter comparison between the source-coupled differential delay cell and the proposed CMOS inverter based delay cell is given. A new method to optimize loop parameters based on low-jitter in PLL is also introduced. A low-jitter 1.25GHz Serdes is implemented in a 0.35μm standard 2P3M CMOS process. The result shows that the RJ (random jitter) RMS of 1.25GHz data rate series output is 2. 3ps (0. 0015UI) and RJ (1 sigma) is 0. 0035UI. A phase noise measurement shows - 120dBc/Hz@100kHz at 1111100000 clock-pattern data out.
文摘This is an extended version of the same titled paper presented at the 21st CIRED. It discusses a new technique for identification and location of defective insulator strings in power lines based on the analysis of high frequency signals generated by corona effect. Damaged insulator strings may lead to loss of insulation and hence to the corona effect, in other words, to partial discharges. These partial discharges can be detected by a system composed of a capacitive coupling device (region between the phase and the metal body of a current transformer), a data acquisition board and a computer. Analyzing the waveform of these partial discharges through a neural network based software, it is possible to identify and locate the defective insulator string. This paper discusses how this software analysis works and why its technique is suitable for this application. Hence the results of key tests performed along the development are discussed, pointing out the main factors that affect their performance.
文摘The paper presents results from a study of a series-connected single-phase APF (active power filter) with a control system based on hysteresis control, both with and without limitation of the maximum switching frequency. The general purpose of the series APF is to eliminate the low order harmonics of the source (grid) voltage. The filter operation at limited and unlimited maximum switching frequency is explained and it is described using building blocks and time diagrams illustrating the tracking down of the reference curve. Waveforms from the computer simulation and waveforms from the experimental tests of the filter are presented also for the two situations. Operations at limited and unlimited maximum switching frequency are compared regarding the quality of the voltage across the load, the complexity of the implementation of the control system, and the electromagnetic compatibility. The investigation proved capability of the series APF to achieve its general purpose using the hysteresis control methods studied (limited and unlimited switching frequency).
文摘This work aims to control pulsed power for biomedical fields, which demands sensitive parameters. The pulsed power consists of a voltage rise time of less than 50 ns and charging energy to 1.0 J/pulse; also, the pulse control area includes pulse interval pulse shot number, output voltage. To achieve this system, a pulsed power system exists including software running on PC, universal serial bus (UgB~ for connection, and FPGA controller. Using the software for complex control of pulsed power will enable expansion into various fields with easy operation.
文摘This paper presents a power system architecture where SIPO (series-input parallel-output) converters are controlled to achieve uniform inpt voltages across their respective series-connected power sources while also tracking the system optimum power point; the system optimum power point is the maximum power drawn from the series-connected power sources while their voltages are kept uniformly distributed. With proper uniform input voltage distribution control, near maximum use of the power sources is achieved by employing only one MPT (maximum power tracking) controller instead of multiple MPT controllers dedicated for their respective power sources. Provided that the maximum power point voltages of the input power sources are similar, the resulting system architecture offers near-maximum power transfer with a lower parts count. A feasibility study using computer simulation has successfully validated two SIPO power architectures and their control concepts for optimum power transfer.
基金supported by the UTM’s Flagship Research(Nos.Q.J130000.2426.00G26 and Q.J130000.2509.06H46)
文摘In this paper, a microring resonator(MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus waveguide which is used as propagation and oscillation medium. The scattering matrix method is employed to determine the output signal intensity which acts as the input source between two-level Rabi oscillation states, where the increase of Rabi oscillation frequency with time is obtained at the resonant state. The population probability of the excited state is higher and unstable at the optical resonant state due to the nonlinear spontaneous emission process. The enhanced spontaneous emission can be managed by the atom(photon) excitation, which can be useful for atomic related sensors and single-photon source applications.