We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characterist...We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.展开更多
Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D f...Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.展开更多
基金supported by the Science for Earthquake Resilience(No.XH17058Y)Science and Technology Innovation Fund of the First Crust Monitoring and Application Center,CEA(No.FMC2016004)Special Program for Basic Work of the Ministry of Science and Technology,China(No.2015FY210403)
文摘We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.
基金supported by the Fundamental Research Funds For the Central Universities (Grant No. HEUCFR1013)
文摘Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.