Nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst were prepared by elec- troless deposition with anodic aluminum oxide template. Pt-Pd composite catalyst was de- posited on the arrays by displacement ...Nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst were prepared by elec- troless deposition with anodic aluminum oxide template. Pt-Pd composite catalyst was de- posited on the arrays by displacement reaction. SEM images show that the nickel nanowires have an average diameter of I00 nm and the nickel nanotubes have an average inner diameter of 200 nm. EDS scanning reveals that elemental Pt and Pd disperse uniformly on the arrays. Cyclic voltammetry study indicates that the nickel nanotube array loaded with Pt-Pd pos- sesses a higher electrochemical activity for ethanol oxidation than the nickel nanowire array with Pt-Pd.展开更多
Metal‐organic frameworks(MOFs)are a series of highly porous crystalline materials,which are built from inorganic metal nodes and organic linkers through coordination bonds.Their unique porous structural features(such...Metal‐organic frameworks(MOFs)are a series of highly porous crystalline materials,which are built from inorganic metal nodes and organic linkers through coordination bonds.Their unique porous structural features(such as high porosity,high surface areas,and highly ordered nanoporous structures)and designable structures and compositions have facilitated their use in gas capture,separation,catalysis,and energy storage and conversion.Recently,the design and synthesis of pure MOFs and their derivatives have opened new routes to develop highly efficient electrocatalysts toward oxygen reduction reactions(ORR)and oxygen evolution reactions(OER),which are the core electrode reactions in many energy storage and conversion techniques,such as metal‐air batteries and fuel cells.This review first discusses recent progress in the synthesis and the electrocatalytic applications of pure MOF‐based electrocatalysts toward ORR or OER,including pure MOFs,MOFs decorated with active species,and MOFs incorporated with conductive materials.The following section focuses on the advancements of the design and preparation of various MOF‐derived materials-such as inorganic nano‐(or micro‐)structures/porous carbon composites,pure porous carbons,pure inorganic nano‐(or micro‐)structured materials,and single‐atom electrocatalysts-and their applications in oxygen electrocatalysis.Finally,we present a conclusion and an outlook for some general design strategies and future research directions of MOF‐based oxygen electrocatalysts.展开更多
Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of ...Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of the subsidence lakes. The following indexes were discussed such as organic indexes (TOC, CODM,, BOD, COD), nutrient salts (TN, NH4^+, NO3, NO,, Kjeldahl Nitrogen, TP, PO4^3- ), etc. It is shown that water quality of the mining subsidence lake during the initial stage ( 2 years to 7 years) can stay relatively stable with a fluctuation during different quarters in a year, which can reach class Ill or IV of the Surthcc Water Environmental Quality Standard.展开更多
Developing sustainable and clean electrochemical energy conversion technologies is a crucial step in addressing the challenges of energy shortage and environmental pollution. Exploring and developing new electrocataly...Developing sustainable and clean electrochemical energy conversion technologies is a crucial step in addressing the challenges of energy shortage and environmental pollution. Exploring and developing new electrocatalysts with excellent performance and low cost will facilitate the commercial use of these energy conversion technologies. Recently, dual-atom catalysts(DACs) have attracted considerable research interest since they exhibit higher metal atom loading and more flexible active sites compared to single-atom catalysts(SACs). In this paper, the latest preparation methods and characterization techniques of DACs are systematically reviewed. The advantages of homonuclear and heteronuclear DACs and the catalytic mechanism and identification technologies between the two DACs are highlighted. The current applications of DACs in the field of electrocatalysis are summarized. The development opportunities and challenges of DACs in the future are prospected. The ultimate goal is to provide new ideas for the preparation of new catalysts with excellent properties by customizing diatomic catalysts for electrochemical applications.展开更多
As resource scarcity, extreme climate change, and pollution levels increase, economic growth must rely on more environmentally friendly and efficient production processes, Fuel cells are an ideal alternative to intern...As resource scarcity, extreme climate change, and pollution levels increase, economic growth must rely on more environmentally friendly and efficient production processes, Fuel cells are an ideal alternative to internal combustion (IC) engines and boilers on the path to greener industries because of their high effi- ciency and environmentally friendly operation, However, as a new energy technology, significant market penetration of fuel cells has not yet been achieved, In this paper, we perform a techno-economic and environmental analysis of fuel cell systems using life cycle and value chain activities, First, we investigate the procedure of fuel cell development and identify what activities should he undertaken according to fuel cell life cycle activities, value chain activities, and end-user acceptance criteria, Next, we present a unified learning of the institutional barriers in fuel cell commercialization, The primary end-user accep- tance criteria are function, cost, and reliability; a fuel cell should outperform these criteria compared with its competitors, such as IC engines and batteries, to achieve a competitive advantage, The repair and maintenance costs of fuel cells (due to low reliability) can lead to a substantial cost increase and decrease in availability, which are the major factors for end-user acceptance, The fuel cell industry must face the challenge of how to overcome this reliability barrier, This paper provides a deeper insight into our work over the years on the main barriers to fuel cell commercialization, and discusses the potential pivotal role of fuel cells in a future low-carbon green economy, It also identifies the needs and points out some direc- tions for this future low-carbon economy, Green energy, supplied with fuel cells, is truly the business mode of the future, Striving for a more sustainable development of economic growth by adopting green public investments and implementing policy initiatives encourages environmentally responsible indus- trial investments.展开更多
To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) metho...To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.展开更多
Based on experimental data, the energy storage performances of floor radiant heating system were investigated. The decrease of indoor air temperature after the stopping of floor heating was compared with that of fan-c...Based on experimental data, the energy storage performances of floor radiant heating system were investigated. The decrease of indoor air temperature after the stopping of floor heating was compared with that of fan-coil heating system. The increase of indoor air temperature after the stopping of floor cooling system was analyzed. The results show that the floor heating system has good thermal storage performance, which can be used to a night-running model to obtain the energy-saving benefits efficient and economic running cost, and still can be used for “shifting peak load to off-peak” macroscopically.展开更多
The aboveground biomass allocation and water relations in alpine shrubs can provide useful information on analyzing their ecological and hydrological functions in alpine regions. The objectives of this study were to c...The aboveground biomass allocation and water relations in alpine shrubs can provide useful information on analyzing their ecological and hydrological functions in alpine regions. The objectives of this study were to compare the aboveground biomass allocation, water storage ratio and distribution between foliage/woody components,and to investigate factors affecting aboveground biomass allocation and water storage ratio in alpine willow shrubs in the Qilian Mountains, China. Three experimental sites were selected along distance gradients from the riverside in the Hulu watershed in the Qilian Mountains. The foliage, woody component biomass, and water allocation of Salix cupularis Rehd.and Salix oritrepha Schneid. shrubs were measured using the selective destructive method. The results indicated that the foliage component had higher relative water and biomass storage than the woody component in the upper part of the crown in individual shrubs. However, the woody component was the major biomass and water storage component in the whole shrub level for S. cupularis and S.oritrepha. Moreover, the foliage/woody component biomass ratio decreased from the top to the basal level of shrubs. The relative water storage allocation was significantly affected by species types, but was not affected by sites and interaction between species and sites. Meanwhile, relative water storage was affectedby sites as well as by interaction between sites and species type.展开更多
The aim of this study was to determine the characteristics of the distribution of energy plant moisture content along the height of their shoots and the dynamics of moisture during storage in natural conditions. The s...The aim of this study was to determine the characteristics of the distribution of energy plant moisture content along the height of their shoots and the dynamics of moisture during storage in natural conditions. The shoots of Spartina, Miscanthus and willow were used in the study. Entire shoots were cut into sections of 10 cm and for each set in monthly cycles for six months moisture content was evaluated. After a month's storage of freshly cut shoots the biggest decrease of content moisture in the shoots of Spartina and Miscanthus was recorded, by 31% and 22%, respectively, and the lowest in willow shoots (12%). After sixth months of shoots storage the lowest moisture content (10%-12%) was reached in miscanthus. The most uneven moisture content along the height of shoots Spartina was characterized because on one third of the height from the bottom, the moisture content of shoots was 20%, and the top had moisture content in the range 5%-10%. Willow shoots were characterized by the smallest drop in moisture, and the final moisture content was about 23%, with the top part of moisture content of 10%-20%. The dynamics of moisture change during the six months of storage of grass shoots (Miscanthus and Spartina) in natural conditions under roofing was described by one power function regression, and willow by another one. Empirical models can be used to predict changes in moisture content of these plants in experiment conditions, since the coefficients of determination were 94.66% and 89.18%, respectively.展开更多
Initiated and approved in 2009,the project of Development Pattern and Implementation Design of Smart Energy Resource Grid in China is now accomplished with the research achievement released to the public and highly va...Initiated and approved in 2009,the project of Development Pattern and Implementation Design of Smart Energy Resource Grid in China is now accomplished with the research achievement released to the public and highly valued by authorized organizations such as the Global Smart Grid Federation.In this paper,based on the description of the research achievement,the advantages of the smart energy resource grid in China and the consequential changes are analyzed and discussed,involving the industries of electric power,oil and gas,energy storage,water supply,architecture and transportations etc.展开更多
文摘Nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst were prepared by elec- troless deposition with anodic aluminum oxide template. Pt-Pd composite catalyst was de- posited on the arrays by displacement reaction. SEM images show that the nickel nanowires have an average diameter of I00 nm and the nickel nanotubes have an average inner diameter of 200 nm. EDS scanning reveals that elemental Pt and Pd disperse uniformly on the arrays. Cyclic voltammetry study indicates that the nickel nanotube array loaded with Pt-Pd pos- sesses a higher electrochemical activity for ethanol oxidation than the nickel nanowire array with Pt-Pd.
文摘Metal‐organic frameworks(MOFs)are a series of highly porous crystalline materials,which are built from inorganic metal nodes and organic linkers through coordination bonds.Their unique porous structural features(such as high porosity,high surface areas,and highly ordered nanoporous structures)and designable structures and compositions have facilitated their use in gas capture,separation,catalysis,and energy storage and conversion.Recently,the design and synthesis of pure MOFs and their derivatives have opened new routes to develop highly efficient electrocatalysts toward oxygen reduction reactions(ORR)and oxygen evolution reactions(OER),which are the core electrode reactions in many energy storage and conversion techniques,such as metal‐air batteries and fuel cells.This review first discusses recent progress in the synthesis and the electrocatalytic applications of pure MOF‐based electrocatalysts toward ORR or OER,including pure MOFs,MOFs decorated with active species,and MOFs incorporated with conductive materials.The following section focuses on the advancements of the design and preparation of various MOF‐derived materials-such as inorganic nano‐(or micro‐)structures/porous carbon composites,pure porous carbons,pure inorganic nano‐(or micro‐)structured materials,and single‐atom electrocatalysts-and their applications in oxygen electrocatalysis.Finally,we present a conclusion and an outlook for some general design strategies and future research directions of MOF‐based oxygen electrocatalysts.
文摘Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of the subsidence lakes. The following indexes were discussed such as organic indexes (TOC, CODM,, BOD, COD), nutrient salts (TN, NH4^+, NO3, NO,, Kjeldahl Nitrogen, TP, PO4^3- ), etc. It is shown that water quality of the mining subsidence lake during the initial stage ( 2 years to 7 years) can stay relatively stable with a fluctuation during different quarters in a year, which can reach class Ill or IV of the Surthcc Water Environmental Quality Standard.
文摘Developing sustainable and clean electrochemical energy conversion technologies is a crucial step in addressing the challenges of energy shortage and environmental pollution. Exploring and developing new electrocatalysts with excellent performance and low cost will facilitate the commercial use of these energy conversion technologies. Recently, dual-atom catalysts(DACs) have attracted considerable research interest since they exhibit higher metal atom loading and more flexible active sites compared to single-atom catalysts(SACs). In this paper, the latest preparation methods and characterization techniques of DACs are systematically reviewed. The advantages of homonuclear and heteronuclear DACs and the catalytic mechanism and identification technologies between the two DACs are highlighted. The current applications of DACs in the field of electrocatalysis are summarized. The development opportunities and challenges of DACs in the future are prospected. The ultimate goal is to provide new ideas for the preparation of new catalysts with excellent properties by customizing diatomic catalysts for electrochemical applications.
基金the Ministry of Economic Development and Trade of Government of Alberta for the Campus Alberta Innovation Program (CAIP) Research Chair (RCP-12-001BCAIP)
文摘As resource scarcity, extreme climate change, and pollution levels increase, economic growth must rely on more environmentally friendly and efficient production processes, Fuel cells are an ideal alternative to internal combustion (IC) engines and boilers on the path to greener industries because of their high effi- ciency and environmentally friendly operation, However, as a new energy technology, significant market penetration of fuel cells has not yet been achieved, In this paper, we perform a techno-economic and environmental analysis of fuel cell systems using life cycle and value chain activities, First, we investigate the procedure of fuel cell development and identify what activities should he undertaken according to fuel cell life cycle activities, value chain activities, and end-user acceptance criteria, Next, we present a unified learning of the institutional barriers in fuel cell commercialization, The primary end-user accep- tance criteria are function, cost, and reliability; a fuel cell should outperform these criteria compared with its competitors, such as IC engines and batteries, to achieve a competitive advantage, The repair and maintenance costs of fuel cells (due to low reliability) can lead to a substantial cost increase and decrease in availability, which are the major factors for end-user acceptance, The fuel cell industry must face the challenge of how to overcome this reliability barrier, This paper provides a deeper insight into our work over the years on the main barriers to fuel cell commercialization, and discusses the potential pivotal role of fuel cells in a future low-carbon green economy, It also identifies the needs and points out some direc- tions for this future low-carbon economy, Green energy, supplied with fuel cells, is truly the business mode of the future, Striving for a more sustainable development of economic growth by adopting green public investments and implementing policy initiatives encourages environmentally responsible indus- trial investments.
基金Project(50606007) supported by the National Natural Science Foundation of China
文摘To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.
文摘Based on experimental data, the energy storage performances of floor radiant heating system were investigated. The decrease of indoor air temperature after the stopping of floor heating was compared with that of fan-coil heating system. The increase of indoor air temperature after the stopping of floor cooling system was analyzed. The results show that the floor heating system has good thermal storage performance, which can be used to a night-running model to obtain the energy-saving benefits efficient and economic running cost, and still can be used for “shifting peak load to off-peak” macroscopically.
基金funded by the National Natural Science Foundation of China (Grant Nos. 91025011, 91125013)National Science Fund for the Excellent Youth Scholars of China (Grant No. 41222001)
文摘The aboveground biomass allocation and water relations in alpine shrubs can provide useful information on analyzing their ecological and hydrological functions in alpine regions. The objectives of this study were to compare the aboveground biomass allocation, water storage ratio and distribution between foliage/woody components,and to investigate factors affecting aboveground biomass allocation and water storage ratio in alpine willow shrubs in the Qilian Mountains, China. Three experimental sites were selected along distance gradients from the riverside in the Hulu watershed in the Qilian Mountains. The foliage, woody component biomass, and water allocation of Salix cupularis Rehd.and Salix oritrepha Schneid. shrubs were measured using the selective destructive method. The results indicated that the foliage component had higher relative water and biomass storage than the woody component in the upper part of the crown in individual shrubs. However, the woody component was the major biomass and water storage component in the whole shrub level for S. cupularis and S.oritrepha. Moreover, the foliage/woody component biomass ratio decreased from the top to the basal level of shrubs. The relative water storage allocation was significantly affected by species types, but was not affected by sites and interaction between species and sites. Meanwhile, relative water storage was affectedby sites as well as by interaction between sites and species type.
文摘The aim of this study was to determine the characteristics of the distribution of energy plant moisture content along the height of their shoots and the dynamics of moisture during storage in natural conditions. The shoots of Spartina, Miscanthus and willow were used in the study. Entire shoots were cut into sections of 10 cm and for each set in monthly cycles for six months moisture content was evaluated. After a month's storage of freshly cut shoots the biggest decrease of content moisture in the shoots of Spartina and Miscanthus was recorded, by 31% and 22%, respectively, and the lowest in willow shoots (12%). After sixth months of shoots storage the lowest moisture content (10%-12%) was reached in miscanthus. The most uneven moisture content along the height of shoots Spartina was characterized because on one third of the height from the bottom, the moisture content of shoots was 20%, and the top had moisture content in the range 5%-10%. Willow shoots were characterized by the smallest drop in moisture, and the final moisture content was about 23%, with the top part of moisture content of 10%-20%. The dynamics of moisture change during the six months of storage of grass shoots (Miscanthus and Spartina) in natural conditions under roofing was described by one power function regression, and willow by another one. Empirical models can be used to predict changes in moisture content of these plants in experiment conditions, since the coefficients of determination were 94.66% and 89.18%, respectively.
文摘Initiated and approved in 2009,the project of Development Pattern and Implementation Design of Smart Energy Resource Grid in China is now accomplished with the research achievement released to the public and highly valued by authorized organizations such as the Global Smart Grid Federation.In this paper,based on the description of the research achievement,the advantages of the smart energy resource grid in China and the consequential changes are analyzed and discussed,involving the industries of electric power,oil and gas,energy storage,water supply,architecture and transportations etc.