Open source intelligence is one of the most important public data sources for strategic information analysis. One of the primary and core issues of strategic information research is information perception,so this pape...Open source intelligence is one of the most important public data sources for strategic information analysis. One of the primary and core issues of strategic information research is information perception,so this paper mainly expounds the perception method for strategic information perception in the open source intelligence environment as well as the framework and basic process of information perception. This paper argues that in order to match the information perception result with the information depiction result,it conducts practical exploration for the results of information acquisition,perception,depiction and analysis. This paper introduces and develops a monitoring platform for information perception. The results show that the method proposed in this paper is feasible.展开更多
In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the...In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the dynamic behavior of RC slabs under blast loading and its influencing factors are studied. The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software. Both the strain rate effect and the damage accumulation are taken into account in the material model. The dynamic responses of the RC slab subjected to blast loading are analyzed, and the influence of concrete strength, thickness and reinforcement ratio on the behavior of the RC slab under blast loading is numerically investigated. Based on the numerical results, some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.展开更多
Network measures are useful for predicting fault-prone modules. However, existing work has not distinguished faults according to their severity. In practice, high severity faults cause serious problems and require fur...Network measures are useful for predicting fault-prone modules. However, existing work has not distinguished faults according to their severity. In practice, high severity faults cause serious problems and require further attention. In this study, we explored the utility of network measures in high severity faultproneness prediction. We constructed software source code networks for four open-source projects by extracting the dependencies between modules. We then used univariate logistic regression to investigate the associations between each network measure and fault-proneness at a high severity level. We built multivariate prediction models to examine their explanatory ability for fault-proneness, as well as evaluated their predictive effectiveness compared to code metrics under forward-release and cross-project predictions. The results revealed the following:(1) most network measures are significantly related to high severity fault-proneness;(2) network measures generally have comparable explanatory abilities and predictive powers to those of code metrics; and(3) network measures are very unstable for cross-project predictions. These results indicate that network measures are of practical value in high severity fault-proneness prediction.展开更多
Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery compo- nents efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial in- fl...Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery compo- nents efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial in- flow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fuUy 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment. Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh genera- tion and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.展开更多
基金Supported by the National Social Science Fund Project(No.18BTQ054)
文摘Open source intelligence is one of the most important public data sources for strategic information analysis. One of the primary and core issues of strategic information research is information perception,so this paper mainly expounds the perception method for strategic information perception in the open source intelligence environment as well as the framework and basic process of information perception. This paper argues that in order to match the information perception result with the information depiction result,it conducts practical exploration for the results of information acquisition,perception,depiction and analysis. This paper introduces and develops a monitoring platform for information perception. The results show that the method proposed in this paper is feasible.
基金Supported by National Natural Science Foundation of China (No. 50638030)National Key Technologies R&D Program of China (No. 2006BAJ13B02).
文摘In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the dynamic behavior of RC slabs under blast loading and its influencing factors are studied. The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software. Both the strain rate effect and the damage accumulation are taken into account in the material model. The dynamic responses of the RC slab subjected to blast loading are analyzed, and the influence of concrete strength, thickness and reinforcement ratio on the behavior of the RC slab under blast loading is numerically investigated. Based on the numerical results, some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.
基金supported by National Natural Science Foundation of China (Grant Nos. 61472175, 61472178, 61272082, 61272080, 91418202)Natural Science Foundation of Jiangsu Province (Grant No. BK20130014)Natural Science Foundation of Colleges in Jiangsu Province (Grant No. 13KJB520018)
文摘Network measures are useful for predicting fault-prone modules. However, existing work has not distinguished faults according to their severity. In practice, high severity faults cause serious problems and require further attention. In this study, we explored the utility of network measures in high severity faultproneness prediction. We constructed software source code networks for four open-source projects by extracting the dependencies between modules. We then used univariate logistic regression to investigate the associations between each network measure and fault-proneness at a high severity level. We built multivariate prediction models to examine their explanatory ability for fault-proneness, as well as evaluated their predictive effectiveness compared to code metrics under forward-release and cross-project predictions. The results revealed the following:(1) most network measures are significantly related to high severity fault-proneness;(2) network measures generally have comparable explanatory abilities and predictive powers to those of code metrics; and(3) network measures are very unstable for cross-project predictions. These results indicate that network measures are of practical value in high severity fault-proneness prediction.
文摘Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery compo- nents efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial in- flow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fuUy 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment. Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh genera- tion and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.