故障限流是保障直流输电系统安全运行的关键技术,现有源侧和网侧限流方法通常独立配置且未与故障严重程度相匹配,难以兼顾限流能力与设备成本。针对上述问题,该文提出一种考虑故障严重程度的源网自适应限流策略,利用源侧模块化多电平换...故障限流是保障直流输电系统安全运行的关键技术,现有源侧和网侧限流方法通常独立配置且未与故障严重程度相匹配,难以兼顾限流能力与设备成本。针对上述问题,该文提出一种考虑故障严重程度的源网自适应限流策略,利用源侧模块化多电平换流器(modular multilevel converter,MMC)与网侧故障限流器(fault current limiter,FCL)的限流贡献度配合,实现主动匹配限流目标和故障条件的自适应限流。能够在保障限流能力的前提下,降低FCL配置成本及MMC降压运行对电网的不利影响。首先,分别定量分析源侧MMC与网侧FCL的限流贡献度,进而推导考虑限流贡献度配合的源网协同限流计算方法;基于此提出限流贡献度匹配故障严重程度的自适应故障限流策略;最后,在电磁暂态仿真中对所提策略的有效性进行验证。展开更多
文摘故障限流是保障直流输电系统安全运行的关键技术,现有源侧和网侧限流方法通常独立配置且未与故障严重程度相匹配,难以兼顾限流能力与设备成本。针对上述问题,该文提出一种考虑故障严重程度的源网自适应限流策略,利用源侧模块化多电平换流器(modular multilevel converter,MMC)与网侧故障限流器(fault current limiter,FCL)的限流贡献度配合,实现主动匹配限流目标和故障条件的自适应限流。能够在保障限流能力的前提下,降低FCL配置成本及MMC降压运行对电网的不利影响。首先,分别定量分析源侧MMC与网侧FCL的限流贡献度,进而推导考虑限流贡献度配合的源网协同限流计算方法;基于此提出限流贡献度匹配故障严重程度的自适应故障限流策略;最后,在电磁暂态仿真中对所提策略的有效性进行验证。