Boulder block ramps are river engineering structures used to stabilise river beds. Block ramps provide a semi-natural and aesthetically pleasing solution to certain river engineering problems in mountain streams. When...Boulder block ramps are river engineering structures used to stabilise river beds. Block ramps provide a semi-natural and aesthetically pleasing solution to certain river engineering problems in mountain streams. When constructing block ramps,one can use the dissipative behaviour of large macroroughness elements randomly placed on the river bed to enhance fish migration in an upstream direction thus, in this sense, meeting the requirements of the EU Water Framework Directive. Block ramps are often designed and constructed to replace damaged drop hydraulic structures in the channels of mountain streams. This paper investigates the resilience of a particular block ramp placed in the Krzczonówka stream(Polish Carpathians) in terms of the engineering design function and its durability against damaging. A hydrodynamic analysis of a block ramp is presented before and after a flood event that changed the configuration of the blocks. The seminatural unstructured hydraulic structure was built on the Krzczonowka stream to protect gas pipes which are located beneath it. As a result of several floods, the boulder block chute described in this paper was damaged, and some boulders were dislodged and transported downstream. Our post-flood investigations of bathymetry and velocity revealed that even damaged boulder blocks, removed from the chute and displaced downstream of the structure, still provide significant energy dissipation of the flowing water. The novel of our paper is for the first time showing very detailed analysis of unstructured block ramp hydrodynamics parameters done in the field.Also the novel finding of our investigations shows that before and after the flood event the unstructured block ramp structure, is still fish friendly in terms of hydrodynamics.展开更多
Recent improvements to sewerage systems have meant that the relative contribution of point sources of pollution to the overall pollutant loads of streams has decreased markedly. Consequently, the potential increase in...Recent improvements to sewerage systems have meant that the relative contribution of point sources of pollution to the overall pollutant loads of streams has decreased markedly. Consequently, the potential increase in non-point source pollution means that it may be necessary to focus more on pollution loads from non-point sources in the future. This study examined pollution loads from non-point sources in streams flowing through forested areas. In addition, the relationship between runoff and pollution loads was also clarified. The small streams in the Tohoku University Botanical Gardens, in Sendai city, Japan, were sampled during a dry weather period and their water quality parameters were characterized. Chemical Oxygen Demand (COD) concentration increased with distance downstream, possibly because the soils in downstream areas contained high amounts of organic matter. Conversely, the concentration of nitrate nitrogen (NO3-N) decreased with distance downstream, probably because upstream soils were generally in an oxidized state while those further downstream were reduced. COD concentration increased with air temperature, while NO3-N levels decreased with an increase in air temperatures.展开更多
Diurnal minor and trace elements in glacial outflow water draining the Qiyi Glacier and associated hydrological controls as well as the filtration effects on water chemistry were examined. Results show that major ions...Diurnal minor and trace elements in glacial outflow water draining the Qiyi Glacier and associated hydrological controls as well as the filtration effects on water chemistry were examined. Results show that major ions, Li, St, and Ba are exported pre- dominately as mobile monovalent or divalent ions and are controlled by hydrological variations over the diurnal cycle exhibit- ing an inverse concentration with discharge, suggesting that Li, Sr, and Ba can be used as tracers in subglacial hydrological investigations. Conversely, other elements (e.g. Fe, Al, and Cr) exhibit variations that are not strongly correlated with the dis- charge reflecting the physicochemical controls. The non-filtered operation appears not to strongly influence Sr and Ba, but has an effect on some elements such as Fe, Al, V, Ti, and Co, indicating that these changed elements are transported in particulate forms and thus their concentrations are highly dependent on particulate numbers in solutions. This implies that the immediate filtration after sampling is essential in hydrochemical studies at Alpine glacial basins due to subsequent mineral dissolution.展开更多
基金financed by the Ministry of Science and Higher Education of the Republic of Poland: 1. Cracow University of Technology, Faculty of Civil Engineering: L4/106/2018/DS, L4/107/2018/DS and L4/585/2018/DS-M. 2. University of Agriculture in Krakow: BM2313/KIWi G/2018
文摘Boulder block ramps are river engineering structures used to stabilise river beds. Block ramps provide a semi-natural and aesthetically pleasing solution to certain river engineering problems in mountain streams. When constructing block ramps,one can use the dissipative behaviour of large macroroughness elements randomly placed on the river bed to enhance fish migration in an upstream direction thus, in this sense, meeting the requirements of the EU Water Framework Directive. Block ramps are often designed and constructed to replace damaged drop hydraulic structures in the channels of mountain streams. This paper investigates the resilience of a particular block ramp placed in the Krzczonówka stream(Polish Carpathians) in terms of the engineering design function and its durability against damaging. A hydrodynamic analysis of a block ramp is presented before and after a flood event that changed the configuration of the blocks. The seminatural unstructured hydraulic structure was built on the Krzczonowka stream to protect gas pipes which are located beneath it. As a result of several floods, the boulder block chute described in this paper was damaged, and some boulders were dislodged and transported downstream. Our post-flood investigations of bathymetry and velocity revealed that even damaged boulder blocks, removed from the chute and displaced downstream of the structure, still provide significant energy dissipation of the flowing water. The novel of our paper is for the first time showing very detailed analysis of unstructured block ramp hydrodynamics parameters done in the field.Also the novel finding of our investigations shows that before and after the flood event the unstructured block ramp structure, is still fish friendly in terms of hydrodynamics.
文摘Recent improvements to sewerage systems have meant that the relative contribution of point sources of pollution to the overall pollutant loads of streams has decreased markedly. Consequently, the potential increase in non-point source pollution means that it may be necessary to focus more on pollution loads from non-point sources in the future. This study examined pollution loads from non-point sources in streams flowing through forested areas. In addition, the relationship between runoff and pollution loads was also clarified. The small streams in the Tohoku University Botanical Gardens, in Sendai city, Japan, were sampled during a dry weather period and their water quality parameters were characterized. Chemical Oxygen Demand (COD) concentration increased with distance downstream, possibly because the soils in downstream areas contained high amounts of organic matter. Conversely, the concentration of nitrate nitrogen (NO3-N) decreased with distance downstream, probably because upstream soils were generally in an oxidized state while those further downstream were reduced. COD concentration increased with air temperature, while NO3-N levels decreased with an increase in air temperatures.
基金supportedby Key Program of National Natural Science Foundation of China (Grant No. 41030527)Hundred Talents Program of the Chinese Academy of Sciences (Grant No. 0827611002)+4 种基金West Light Program for Talent Cultiration of Chinese Academy of Sciences (CAS), Open Foundation of SKLCS, CAS (Grant No. SKLCS09-04)China Postdoctoral Science Foundation (Grant No. 20110490062)Indenendent Program of SKLCS,CAS (Grant No. SKLCS-ZZ-2012-02-01)National Natural Science Foundation of China (Grant Nos. 40930526 and 40771046)Foundation for Excellent Youth Scholars of CAREERI, CAS
文摘Diurnal minor and trace elements in glacial outflow water draining the Qiyi Glacier and associated hydrological controls as well as the filtration effects on water chemistry were examined. Results show that major ions, Li, St, and Ba are exported pre- dominately as mobile monovalent or divalent ions and are controlled by hydrological variations over the diurnal cycle exhibit- ing an inverse concentration with discharge, suggesting that Li, Sr, and Ba can be used as tracers in subglacial hydrological investigations. Conversely, other elements (e.g. Fe, Al, and Cr) exhibit variations that are not strongly correlated with the dis- charge reflecting the physicochemical controls. The non-filtered operation appears not to strongly influence Sr and Ba, but has an effect on some elements such as Fe, Al, V, Ti, and Co, indicating that these changed elements are transported in particulate forms and thus their concentrations are highly dependent on particulate numbers in solutions. This implies that the immediate filtration after sampling is essential in hydrochemical studies at Alpine glacial basins due to subsequent mineral dissolution.