对于溴化锂吸收式制冷系统所采用的工质,建立了热物性数学模型和相应的自定义函数;对制冷系统原理进行分析,建立了系统控制方程和计算机程序设计流程,并以Borland C++ Builder6.0为平台,开发了可视化且人机互动良好的烟气余热型溴化锂...对于溴化锂吸收式制冷系统所采用的工质,建立了热物性数学模型和相应的自定义函数;对制冷系统原理进行分析,建立了系统控制方程和计算机程序设计流程,并以Borland C++ Builder6.0为平台,开发了可视化且人机互动良好的烟气余热型溴化锂吸收式制冷系统设计软件,为工程设计提供参考依据。展开更多
An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the no...An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles.展开更多
By transforming the original interstage compression cooling system of nitrogen fertilizer plant and adding lithium bromide refrigerator, the paper designs a new compressor interstage cooling system which leads interst...By transforming the original interstage compression cooling system of nitrogen fertilizer plant and adding lithium bromide refrigerator, the paper designs a new compressor interstage cooling system which leads interstage heat in lithium bromide refrigerator and uses the obtained cooling capacity to reduce the temperature of compressed gas. And aspen is used to simulate the new process. Lastly, the paper makes economical and feasible conclusion.展开更多
基金Supported by National Natural Science Foundation of China (No. 50376044)
文摘An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles.
文摘By transforming the original interstage compression cooling system of nitrogen fertilizer plant and adding lithium bromide refrigerator, the paper designs a new compressor interstage cooling system which leads interstage heat in lithium bromide refrigerator and uses the obtained cooling capacity to reduce the temperature of compressed gas. And aspen is used to simulate the new process. Lastly, the paper makes economical and feasible conclusion.