The conductivities of LiBr, LiCl, and LiNO 3 in methanol, ethanol, 1-propanol, and 2-propanol (with electrolyte concentrations <0.08 mol·L-1 ) were determined at 298.15 K, 313.15 K, and 323.15 K at atmosphere ...The conductivities of LiBr, LiCl, and LiNO 3 in methanol, ethanol, 1-propanol, and 2-propanol (with electrolyte concentrations <0.08 mol·L-1 ) were determined at 298.15 K, 313.15 K, and 323.15 K at atmosphere pressure separately by using a conductivity meter. The conductivity data were correlated with Foss-Chen-Justice (FCJ) equation and the limiting molar conductivities were obtained. The mean ionic activity coefficients of the salts in the organic solvents were calculated according to the Debye-Hückel limiting law and Onsager-Falkenhangen equations. The calculated results were compared with those activity coefficients in literature.展开更多
In liquid-liquid systems, the substrates in the liquids are inaccessible to each other for the reaction. By adding a small quantity of phase transfer catalyst, the reaction can be made accessible and accelerated. The ...In liquid-liquid systems, the substrates in the liquids are inaccessible to each other for the reaction. By adding a small quantity of phase transfer catalyst, the reaction can be made accessible and accelerated. The present study involves the phase transfer catalyzed oxidation of 2-methyl-l-butanol by quaternary ammonium permanganate (tricaprylyl methyl ammonium permanganate). The attempt was to compare the kinetics under homogeneous and heterogeneous conditions. Experiments were conducted in a batch reactor to determine the kinetics under homogeneous conditions. A baffled horosilicate agitated reactor was used to find the enhancement factor and the kinetics under heterogeneous conditions. The rate constants determined under both homogeneous and heterogeneous conditions agreed very weU. The oxidation was found to be first order with respect to each of the reactants, quaternary ammonium permanganate and the alcohol, resulting in an overall second order rate expression. Aliquat336 (tricaprylylmethylammonium chloride) was found to be the best compared with the other catalysts tested (triethylbenzylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide and tetrabutylammonium hydrogen sulfate) and it gave an enhancement factor of 9.8.展开更多
The dihydrogen bonds B-H...H-X (X= the complexes of NH3BH3 with HF, HCl, F, Cl, Br, C, O, N) in the dimer (NH3BH3)2 and HBr, H2CO, H20, and CH3OH were theoretically studied. The results show that formation of the ...The dihydrogen bonds B-H...H-X (X= the complexes of NH3BH3 with HF, HCl, F, Cl, Br, C, O, N) in the dimer (NH3BH3)2 and HBr, H2CO, H20, and CH3OH were theoretically studied. The results show that formation of the dihydrogen bond leads to elongation and stretch frequency red shift of the BH and XH bonds, except that in the H2CO system, the CH bond blue shifts. For (NH3BH3)2 and the complexes of the halogenides, red shifts of the XH bonds are caused by the intermolecular hyperconjugation σ(BH)→σ^* (XH). For the system of H2CO, a blue shift of the CH bond is caused by a decrease of the intramolecular hyperconjugation n(O→σ^* (CH). In the other two systems, the red shift of OH bond is a secondary effect of the stronger traditional red-shifted H-bonds N-H... O. In all these systems, red shifts of the BH bonds are caused by two factors: negative repolarization and negative rehybridization of the BH bond, and decrease of occupancy on σ(BH) caused by the intermolecular hyperconjugation σ(BH)→σ^* (XH).展开更多
文摘The conductivities of LiBr, LiCl, and LiNO 3 in methanol, ethanol, 1-propanol, and 2-propanol (with electrolyte concentrations <0.08 mol·L-1 ) were determined at 298.15 K, 313.15 K, and 323.15 K at atmosphere pressure separately by using a conductivity meter. The conductivity data were correlated with Foss-Chen-Justice (FCJ) equation and the limiting molar conductivities were obtained. The mean ionic activity coefficients of the salts in the organic solvents were calculated according to the Debye-Hückel limiting law and Onsager-Falkenhangen equations. The calculated results were compared with those activity coefficients in literature.
文摘In liquid-liquid systems, the substrates in the liquids are inaccessible to each other for the reaction. By adding a small quantity of phase transfer catalyst, the reaction can be made accessible and accelerated. The present study involves the phase transfer catalyzed oxidation of 2-methyl-l-butanol by quaternary ammonium permanganate (tricaprylyl methyl ammonium permanganate). The attempt was to compare the kinetics under homogeneous and heterogeneous conditions. Experiments were conducted in a batch reactor to determine the kinetics under homogeneous conditions. A baffled horosilicate agitated reactor was used to find the enhancement factor and the kinetics under heterogeneous conditions. The rate constants determined under both homogeneous and heterogeneous conditions agreed very weU. The oxidation was found to be first order with respect to each of the reactants, quaternary ammonium permanganate and the alcohol, resulting in an overall second order rate expression. Aliquat336 (tricaprylylmethylammonium chloride) was found to be the best compared with the other catalysts tested (triethylbenzylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide and tetrabutylammonium hydrogen sulfate) and it gave an enhancement factor of 9.8.
基金ACKNOWLEDGMENT This work was supported Science Foundation of China by the National Natural (No.20873103).
文摘The dihydrogen bonds B-H...H-X (X= the complexes of NH3BH3 with HF, HCl, F, Cl, Br, C, O, N) in the dimer (NH3BH3)2 and HBr, H2CO, H20, and CH3OH were theoretically studied. The results show that formation of the dihydrogen bond leads to elongation and stretch frequency red shift of the BH and XH bonds, except that in the H2CO system, the CH bond blue shifts. For (NH3BH3)2 and the complexes of the halogenides, red shifts of the XH bonds are caused by the intermolecular hyperconjugation σ(BH)→σ^* (XH). For the system of H2CO, a blue shift of the CH bond is caused by a decrease of the intramolecular hyperconjugation n(O→σ^* (CH). In the other two systems, the red shift of OH bond is a secondary effect of the stronger traditional red-shifted H-bonds N-H... O. In all these systems, red shifts of the BH bonds are caused by two factors: negative repolarization and negative rehybridization of the BH bond, and decrease of occupancy on σ(BH) caused by the intermolecular hyperconjugation σ(BH)→σ^* (XH).