Sulfur removal from liquid fuels has increased in importance in recent years. Although hydrodesulfurization is the usual method for removing sulfur, the elimination of thiophene compounds using this process is difficu...Sulfur removal from liquid fuels has increased in importance in recent years. Although hydrodesulfurization is the usual method for removing sulfur, the elimination of thiophene compounds using this process is difficult. Photocatalysis is an alternative method being developed for thiophene removal at ambient conditions. Among semiconductors, titania has shown good potential as a photo-catalyst; however, quick recombination of electron holes hinders its commercial use. One way to decrease the recombination rate is to combine carbon nanotubes with a semiconductor. In this work, multiwall carbon nanotube (MWCNT) / titania composites were prepared with different mass ratios of MWCNT to titania using tetraethyl orthotitanate (TEOT) and titanium tetra isopropoxide (TTIP) as precursors of titania. Dibenzothiophene (DBT) photocatalytic removal from n-hexane was measured in both the presence and absence of oxygen. The results indicated that the best removal occurred when the MWCNT to titania ratio was 1. When the ratio exceeded this number, DBT removal efficiency decreased due to light scattering. Also, the composites prepared by TEOT exhibited better efficiency in DBT removal. The research findings suggested that the obtained composite was a visible light active photocatalyst and exhibited better performance in the presence of oxygen. Kinetics of photocatalytic DBT removal was a first-order reaction with removal rate constant 0.7 h–1 obtained at optimum conditions.展开更多
Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discusse...Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.展开更多
BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinn...BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.展开更多
A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron...A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.展开更多
Mesoporous silica materials were synthesized via a sol-gel method employing a room temperature ionic liquid (1-butyl-3-methylimidazolium tetrafiuoroborate, [bmim][BF4]) as a new solvent medium and further modified w...Mesoporous silica materials were synthesized via a sol-gel method employing a room temperature ionic liquid (1-butyl-3-methylimidazolium tetrafiuoroborate, [bmim][BF4]) as a new solvent medium and further modified with surfactant (hexadecyl-trimethyl-ammonium bromide, CTAB) as a pore templating material. The synthesized samples were characterized by the transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption techniques. The results indicated that the mesoporous silica synthesized by using [bmim][BF4] and CTAB as mixed templates showed better mesostructural order and smaller pore size, compared with mesoporous silica materials synthesized by using single [bmim][BF4] as template under the same conditions. This indicates that the presence of surfactant can affect the microstructures of silica prepared by'the present synthesis method.展开更多
Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite ...Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite by sol gel method. In a typical synthe-sis process, a bimetallic molecular compound with chemical formula [Cl2TiZn(dmae)4] (dmae=dimethylaminoethanol) was synthesized and its chemical composition was deter-mined by elemental analysis. The obtained compound has shown excellent solubility in common organic solvents, a prerequisite for its use in sol gel method as SSP. The SSP ob-tained was controllably hydrolyzed by adding equimolar amount of water using ethanol as solvent to get ZnO/TiO2 nanocomposite gel. The resulting gel was precipitated at pH=9 and sintered at 200 ℃ (T200), 400℃ (T400), and 600℃ (T600). The XRD analyses have shown that the as synthesized (non-sintered, T00) powder was amorphous. However, the crystallinity improved upon sintering, and the XRD analyses revealed that the resulting nanomaterials were composed of mixed oxides i.e., ZnO and TiO2. The ZnO was in wurtzite (hexagonal) while the TiO2 was in brookite (orthorhombic) phase. The increase in particlesize was further confirmed from BET analysis and SEM micrographs. The IR spectra ob-tained for the resulting powder have shown the peculiar vibrational bands for Zn-O and Ti-O. Furthermore, the IR spectra revealed that the non-sintered ZnO/TiO2 nanocomposite had significant number of OH group which was removed upon sintering. The photocatalytic activities of the ZnO/TiO2 nanocomposites were tested. All the samples have shown good photocatalytic activities. However, the T400 has shown higher activity than the T00, T200, and T600. The higher photocatalytic activity of T400 than T00, T200, and T600 may be due to improved crystallinity which ensures efficient grain boundary interfaces.展开更多
Zn0.95-zAlxMn0.050 (x=0, 0.03, 0.05, and 0.07) dilute magnetic semiconductor materials have been synthesized by sol-gel auto-combustion technique. The effect of A1 doping on the structural, electrical, and magnetic ...Zn0.95-zAlxMn0.050 (x=0, 0.03, 0.05, and 0.07) dilute magnetic semiconductor materials have been synthesized by sol-gel auto-combustion technique. The effect of A1 doping on the structural, electrical, and magnetic properties has been investigated. X-ray diffraction studies demonstrate the existence of single phase characteristic hexagonal wurtzite type crystal structure, similar to the host ZnO, in all the synthesized compositions. Although, the microscopic images revealed that the grains were clustered, yet some individual grains could be seen to have hexagonal texture. Electrical resistivity was observed to decrease with the rise of temperature up to 450 ℃, depicting the characteristic semiconductor behavior. Room temperature ferromagnetic behavior was observed in all the compositions. The value of saturation magnetization increased with the increase of A1 concentration in ZnMnO system referred to the gradual enhancement of free carriers.展开更多
Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process follo...Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process followed by one‐step hydrothermal treatment. Addition of polymer during hydrothermal treatment resulted in nanodisk and nanoflower morphologies. The morphology, microstructure and chemical composition of thin films prepared under different conditions were examined by field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD) and Raman spectroscopy. The XRD and FE‐SEM investigations confirmed that the GZO nanodisks, na‐norods and nanoflowers formed on the AlN/Si substrates were all wurtzite phase. Green fluorescent protein (GFP) was immobilized on the as‐synthesized GZO nanostructured materials by a dipping process. Atomic force microscopy (AFM) and fluorescence spectroscopy measurements were con‐ducted to confirm the surface binding nature of GFP on the GZO nanostructures to determine their suitability for use in sensor applications and bioimaging techniques. Trace‐level addition of GFP to the GZO nanostructures resulted in a fluorescence response, revealing good activity for ultraviolet light sensor applications.展开更多
H2 generation from a thermochemical water-splitting reaction was performed using a sol-gel derived Ni-ferrite. The sol-gel synthesis involved addition of nickel chloride hexahydrate (NiCl2@6H2O) and ferrous chloride...H2 generation from a thermochemical water-splitting reaction was performed using a sol-gel derived Ni-ferrite. The sol-gel synthesis involved addition of nickel chloride hexahydrate (NiCl2@6H2O) and ferrous chloride tetrahydrate (FeCl2·4H2O) in ethanol followed by gelation using propylene oxide. The gels were aged, dried and calcined at 900 ℃in air or N2 environment. The powders thus obtained were characterized using X-ray diffraction (XRD). This analysis revealed a nominally phase pure Ni-ferrite (NiFe204) composition for the gels calcined in air, whereas those calcined in N2 environment exhibited primarily Ni04Fe2.604 composition mixed with metallic Ni. Particle size and specific surface area (SSA) of the ferrite powders were analyzed using scanning electron microscopy (SEM) and Brauner-Emmett-Teller (BET) surface area analyzer, respectively. The ferrites were placed in a packed bed reactor and water-splitting reaction was carried out at 700 ℃, 800 ℃, and 900 ℃. After water-splitting reaction, oxidized ferrites were regenerated at 900 ℃ for 2 h in N2 environment. Together water-splitting and regeneration steps designated as one thermochemical cycle. In four consecutive thermochemical cycles performed using NiFe204, an average of 40 mL of H2/g per cycle was generated at water-splitting temperature of 900 ℃, which was about five times higher than the average H2 produced at 700 ℃.展开更多
Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the se...Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the severe calcination condition so as to obtain the concentrated C02 stream. In this research, CaO/CaZrO3 sorbents were synthesized using the sol-gel combustion synthesis (SGCS) method with urea as fuel. The cyclic reaction performance of the synthesized sorbents was evaluated on a lab-scaled reactor system through calcination at 950 ℃ in a pure C02 atmosphere and carbonation at 650 ℃ in the 15% (by volume) C02. The mass ratio of CaO to CaZr03 as 8:2 (designated as CasZr2) was screened as the best option among all the synthesized CaO sorbents for its high CO2 capture capacity and carbonation conversion at the initial cycle. And then a gradual decay in the C02 capture capacity was observed at the following 10 successive cycles, but hereafter stabilized throughout the later cycles. Furthermore, structural evolution of the carbonated CasZr2 over the looping cycles was investigated. With increasing looping cycles, the pore peak and mean grain size of the carbonated CasZr2 sorbent shifted to the bigger direction but both the surface area (SA) ratio and surface fractal dimension Ds decreased. Finally, morphological transformation of the carbonated CasZr2 was observed. Agglomeration and edge rounding of the newly formed CaC03 grains were found as aggravated at the cyclic carbonation stage. As a result, carbonation of CasZr2 with C02 was observed only confined to the external active CaO by the fast formation of the CaC03 shell outside, which occluded the further carbonation of the unreacted CaO inside. Therefore, enough attention should be paid to the carbonation stage and more effective activation measures should be explored to ensure the unreacted active CaO fully carbonatPd river the extended Ioonin cycles.展开更多
Techniques for fabricating solution-processed zinc oxide(ZnO)-based thin-film transistors(TFTs)are feasible with solution using various routes.Here,ZnO TFTs were fabricated via sol-gel method using zinc acetate as the...Techniques for fabricating solution-processed zinc oxide(ZnO)-based thin-film transistors(TFTs)are feasible with solution using various routes.Here,ZnO TFTs were fabricated via sol-gel method using zinc acetate as the starting reagent with different modifiers and solvents.The ZnO thin-film semiconductors with well-controlled,preferential crystal orientation and densely packed ZnO crystals can be prepared with the optimized fabrication conditions,exhibiting excellent field-effect far exceeding those of hydrogenated amorphous silicon(a-Si:H).However,the field-effect characteristics of ZnO TFTs were different for different precursor systems which were constituted by zinc acetate,modifiers and solvents.The co-modification of acetoin and monoethanolamine for the precursor system exhibited higher extent of crystal orientation and field-effect.The maximum mobility of 7.65 cm2V-1s-1 and current on-to-off ratio of^105–106 have been obtained.展开更多
文摘Sulfur removal from liquid fuels has increased in importance in recent years. Although hydrodesulfurization is the usual method for removing sulfur, the elimination of thiophene compounds using this process is difficult. Photocatalysis is an alternative method being developed for thiophene removal at ambient conditions. Among semiconductors, titania has shown good potential as a photo-catalyst; however, quick recombination of electron holes hinders its commercial use. One way to decrease the recombination rate is to combine carbon nanotubes with a semiconductor. In this work, multiwall carbon nanotube (MWCNT) / titania composites were prepared with different mass ratios of MWCNT to titania using tetraethyl orthotitanate (TEOT) and titanium tetra isopropoxide (TTIP) as precursors of titania. Dibenzothiophene (DBT) photocatalytic removal from n-hexane was measured in both the presence and absence of oxygen. The results indicated that the best removal occurred when the MWCNT to titania ratio was 1. When the ratio exceeded this number, DBT removal efficiency decreased due to light scattering. Also, the composites prepared by TEOT exhibited better efficiency in DBT removal. The research findings suggested that the obtained composite was a visible light active photocatalyst and exhibited better performance in the presence of oxygen. Kinetics of photocatalytic DBT removal was a first-order reaction with removal rate constant 0.7 h–1 obtained at optimum conditions.
基金Supported by Phosphor Plan of Science Technology of Young Scientists of Shanghai(No.00QE14047).
文摘Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.
基金Supported by National Natural Science Foundation of China(No.50506020)Natural Science Foundation of Tianjin(No.043605211)Young Teacher Foundation of Tianjin University(No.5110103)
文摘BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.
文摘A new solid acid catalyst,SO4^2-/TiO2 modified with tin,was prepared using a sol-gel method and its physicochemical properties were revealed by nitrogen adsorption-desorption,X-ray powder diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,infrared spectroscopy of adsorbed pyridine,temperature-programmed desorption of ammonia and thermal gravimetric analysis.The structure,acidity and thermal stability of the SO4^2-/TiO2-SnO2 catalyst were studied.Incorporating tin enlarged the specific surface area and decreased crystallite size of the SO4^2-/TiO2 catalyst.The total acid sites of the modified catalyst increased and Bronsted acid strength remarkably increased with increasing tin content.The decomposition temperature of sulfate radical in the modified catalyst was 100 ℃ greater and its mass loss was more than twice that of the SO4^2-/TiO2 catalyst.The SO4^2-/TiO2-SnO2 catalyst was designed to synthesize 1,6-hexanediol diacrylate by esterification of 1,6-hexanediol with crylic acid.The yield of 1,6-hexanediol diacrylate exceeded 87% under the optimal reaction conditions:crylic acid to 1,6-hexanediol molar ratio = 3.5,catalyst loading = 7%,reaction temperature = 130 ℃ and reaction time = 3 h.The modified catalyst exhibited excellent reusability and after 10 cycles the conversion of 1,6-hexanediol was above 81%.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.50564006), the Natural Science Foundation From Science and Technology Committee of Yunnan (No.2005E0042), and the Specialized Research Foundation for the Doctoral Program of Higher Education of China (No.20070674001). We also thank Academician Si-shen Xie, Institute of Physics of Chinese Academy Sciences for helping with an SEM facility.
文摘Mesoporous silica materials were synthesized via a sol-gel method employing a room temperature ionic liquid (1-butyl-3-methylimidazolium tetrafiuoroborate, [bmim][BF4]) as a new solvent medium and further modified with surfactant (hexadecyl-trimethyl-ammonium bromide, CTAB) as a pore templating material. The synthesized samples were characterized by the transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption techniques. The results indicated that the mesoporous silica synthesized by using [bmim][BF4] and CTAB as mixed templates showed better mesostructural order and smaller pore size, compared with mesoporous silica materials synthesized by using single [bmim][BF4] as template under the same conditions. This indicates that the presence of surfactant can affect the microstructures of silica prepared by'the present synthesis method.
文摘Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite by sol gel method. In a typical synthe-sis process, a bimetallic molecular compound with chemical formula [Cl2TiZn(dmae)4] (dmae=dimethylaminoethanol) was synthesized and its chemical composition was deter-mined by elemental analysis. The obtained compound has shown excellent solubility in common organic solvents, a prerequisite for its use in sol gel method as SSP. The SSP ob-tained was controllably hydrolyzed by adding equimolar amount of water using ethanol as solvent to get ZnO/TiO2 nanocomposite gel. The resulting gel was precipitated at pH=9 and sintered at 200 ℃ (T200), 400℃ (T400), and 600℃ (T600). The XRD analyses have shown that the as synthesized (non-sintered, T00) powder was amorphous. However, the crystallinity improved upon sintering, and the XRD analyses revealed that the resulting nanomaterials were composed of mixed oxides i.e., ZnO and TiO2. The ZnO was in wurtzite (hexagonal) while the TiO2 was in brookite (orthorhombic) phase. The increase in particlesize was further confirmed from BET analysis and SEM micrographs. The IR spectra ob-tained for the resulting powder have shown the peculiar vibrational bands for Zn-O and Ti-O. Furthermore, the IR spectra revealed that the non-sintered ZnO/TiO2 nanocomposite had significant number of OH group which was removed upon sintering. The photocatalytic activities of the ZnO/TiO2 nanocomposites were tested. All the samples have shown good photocatalytic activities. However, the T400 has shown higher activity than the T00, T200, and T600. The higher photocatalytic activity of T400 than T00, T200, and T600 may be due to improved crystallinity which ensures efficient grain boundary interfaces.
文摘Zn0.95-zAlxMn0.050 (x=0, 0.03, 0.05, and 0.07) dilute magnetic semiconductor materials have been synthesized by sol-gel auto-combustion technique. The effect of A1 doping on the structural, electrical, and magnetic properties has been investigated. X-ray diffraction studies demonstrate the existence of single phase characteristic hexagonal wurtzite type crystal structure, similar to the host ZnO, in all the synthesized compositions. Although, the microscopic images revealed that the grains were clustered, yet some individual grains could be seen to have hexagonal texture. Electrical resistivity was observed to decrease with the rise of temperature up to 450 ℃, depicting the characteristic semiconductor behavior. Room temperature ferromagnetic behavior was observed in all the compositions. The value of saturation magnetization increased with the increase of A1 concentration in ZnMnO system referred to the gradual enhancement of free carriers.
基金supported by King Saud University, Vice Deanship of Research Chairs
文摘Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process followed by one‐step hydrothermal treatment. Addition of polymer during hydrothermal treatment resulted in nanodisk and nanoflower morphologies. The morphology, microstructure and chemical composition of thin films prepared under different conditions were examined by field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD) and Raman spectroscopy. The XRD and FE‐SEM investigations confirmed that the GZO nanodisks, na‐norods and nanoflowers formed on the AlN/Si substrates were all wurtzite phase. Green fluorescent protein (GFP) was immobilized on the as‐synthesized GZO nanostructured materials by a dipping process. Atomic force microscopy (AFM) and fluorescence spectroscopy measurements were con‐ducted to confirm the surface binding nature of GFP on the GZO nanostructures to determine their suitability for use in sensor applications and bioimaging techniques. Trace‐level addition of GFP to the GZO nanostructures resulted in a fluorescence response, revealing good activity for ultraviolet light sensor applications.
文摘H2 generation from a thermochemical water-splitting reaction was performed using a sol-gel derived Ni-ferrite. The sol-gel synthesis involved addition of nickel chloride hexahydrate (NiCl2@6H2O) and ferrous chloride tetrahydrate (FeCl2·4H2O) in ethanol followed by gelation using propylene oxide. The gels were aged, dried and calcined at 900 ℃in air or N2 environment. The powders thus obtained were characterized using X-ray diffraction (XRD). This analysis revealed a nominally phase pure Ni-ferrite (NiFe204) composition for the gels calcined in air, whereas those calcined in N2 environment exhibited primarily Ni04Fe2.604 composition mixed with metallic Ni. Particle size and specific surface area (SSA) of the ferrite powders were analyzed using scanning electron microscopy (SEM) and Brauner-Emmett-Teller (BET) surface area analyzer, respectively. The ferrites were placed in a packed bed reactor and water-splitting reaction was carried out at 700 ℃, 800 ℃, and 900 ℃. After water-splitting reaction, oxidized ferrites were regenerated at 900 ℃ for 2 h in N2 environment. Together water-splitting and regeneration steps designated as one thermochemical cycle. In four consecutive thermochemical cycles performed using NiFe204, an average of 40 mL of H2/g per cycle was generated at water-splitting temperature of 900 ℃, which was about five times higher than the average H2 produced at 700 ℃.
基金Supported by the National Natural Science Foundation of China(51276210,50906030,31301586)the Partial Financial Grant of North China University of Water Resources and Electric Power(201012)the National Basic Research Program of China(2011CB707301)
文摘Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the severe calcination condition so as to obtain the concentrated C02 stream. In this research, CaO/CaZrO3 sorbents were synthesized using the sol-gel combustion synthesis (SGCS) method with urea as fuel. The cyclic reaction performance of the synthesized sorbents was evaluated on a lab-scaled reactor system through calcination at 950 ℃ in a pure C02 atmosphere and carbonation at 650 ℃ in the 15% (by volume) C02. The mass ratio of CaO to CaZr03 as 8:2 (designated as CasZr2) was screened as the best option among all the synthesized CaO sorbents for its high CO2 capture capacity and carbonation conversion at the initial cycle. And then a gradual decay in the C02 capture capacity was observed at the following 10 successive cycles, but hereafter stabilized throughout the later cycles. Furthermore, structural evolution of the carbonated CasZr2 over the looping cycles was investigated. With increasing looping cycles, the pore peak and mean grain size of the carbonated CasZr2 sorbent shifted to the bigger direction but both the surface area (SA) ratio and surface fractal dimension Ds decreased. Finally, morphological transformation of the carbonated CasZr2 was observed. Agglomeration and edge rounding of the newly formed CaC03 grains were found as aggravated at the cyclic carbonation stage. As a result, carbonation of CasZr2 with C02 was observed only confined to the external active CaO by the fast formation of the CaC03 shell outside, which occluded the further carbonation of the unreacted CaO inside. Therefore, enough attention should be paid to the carbonation stage and more effective activation measures should be explored to ensure the unreacted active CaO fully carbonatPd river the extended Ioonin cycles.
基金supported by the Major State Basic Research Development Program of China(Grant No.10332020)
文摘Techniques for fabricating solution-processed zinc oxide(ZnO)-based thin-film transistors(TFTs)are feasible with solution using various routes.Here,ZnO TFTs were fabricated via sol-gel method using zinc acetate as the starting reagent with different modifiers and solvents.The ZnO thin-film semiconductors with well-controlled,preferential crystal orientation and densely packed ZnO crystals can be prepared with the optimized fabrication conditions,exhibiting excellent field-effect far exceeding those of hydrogenated amorphous silicon(a-Si:H).However,the field-effect characteristics of ZnO TFTs were different for different precursor systems which were constituted by zinc acetate,modifiers and solvents.The co-modification of acetoin and monoethanolamine for the precursor system exhibited higher extent of crystal orientation and field-effect.The maximum mobility of 7.65 cm2V-1s-1 and current on-to-off ratio of^105–106 have been obtained.